
resonate Documentation
Release v1.0.9

Kenneth Reitz

Jul 12, 2023

Contents

1 Abacus Plot 3

2 Bubble Plot 5

3 Cohort 7

4 Compressing Detections 9

5 Filtering 11

6 Distance Matrix 13

7 Interval Data 15

8 Residence Index 17

9 Receiver Efficiency Index 19

10 Unique Id 21

11 Visual Timeline 23

12 Contents: 25
12.1 Installation . 25
12.2 Preparing Data . 25
12.3 Abacus Plot . 29
12.4 Bubble Plot . 29
12.5 Cohort . 31
12.6 Compressing Detections . 32
12.7 Filtering Detections on Distance / Time . 33
12.8 Interval Data . 35
12.9 Residence Index . 36
12.10 Receiver Efficiency Index . 41
12.11 Subsetting Data . 42
12.12 Unique Detections ID . 43
12.13 Visual Timeline . 44

13 Indices and tables 47

i

Python Module Index 49

Index 51

ii

resonate Documentation, Release v1.0.9

resonATe is the Ocean Tracking Network’s acoustic telemetry analysis toolkit. It can be used to filter, compress,
visualize and analyze acoustic detection extracts from OTN and other marine telemetry data.

• Abacus Plot

• Bubble Plot

• Cohort

• Compressing Detections

• Distance Matrix

• Filtering

• Interval Data

• Residence Index

• Receiver Efficiency Index

• Unique ID

• Visual Timeline

Contents 1

resonate Documentation, Release v1.0.9

2 Contents

CHAPTER 1

Abacus Plot

The abacus plot is a way to plot annimal along time. The function uses Plotly to place your points on a scatter plot.
ycolumn is used as the y axis and datecollected is used as the x axis. color_column is used to group
detections together and assign them a color. Details are in Abacus Plot.

3

resonate Documentation, Release v1.0.9

4 Chapter 1. Abacus Plot

CHAPTER 2

Bubble Plot

The bubble plot function returns a Plotly scatter plot layered ontop of a map. The color of the markers will indicate the
number of detections at each location. Alternatively, you can indicate the number of individuals seen at each location
by using type = 'individual'. Details are in Bubble Plot.

5

resonate Documentation, Release v1.0.9

6 Chapter 2. Bubble Plot

CHAPTER 3

Cohort

The tool takes a file of compressed detections and a time parameter in minutes. It identifies groups of animals traveling
together. Each station an animal visits is checked for other animals detected there within the specified time period.
Details are in Cohort Tool.

7

resonate Documentation, Release v1.0.9

8 Chapter 3. Cohort

CHAPTER 4

Compressing Detections

Compressing detections is done by looking at the detection times and locations of an animal. Any detections that occur
successively in time, in the same location, and the time between detections does not exceed the timefilter, are
combined into a single detection with a start and end time. The result is a compressed detections Pandas DataFrame.

Compression is the first step of the Mihoff Interval Data Tool. Compressed detection DataFrames are needed for the
tools, such as interval and cohort. Details are in Compression Tool.

9

resonate Documentation, Release v1.0.9

10 Chapter 4. Compressing Detections

CHAPTER 5

Filtering

(White, E., Mihoff, M., Jones, B., Bajona, L., Halfyard, E. 2014. White-Mihoff False Filtering Tool)

OTN has developed a tool which will assist with filtering false detections. The first level of filtering involves identifying
isolated detections. The original concept came from work done by Easton White. He was kind enough to share his
research database with OTN. We did some preliminary research and developed a proposal for a filtering tool based on
what Easton had done. This proof of concept was presented to Steve Kessel and Eddie Halfyard in December 2013
and a decision was made to develop a tool for general use.

This is a very simple tool. It will take an input file of detections and based on an input parameter will identify suspect
detections. The suspect detections will be put into a dataframe which the user can examine. There will be enough
information for each suspect detection for the user to understand why it was flagged. There is also enough information
to be able to reference the detection in the original file if the user wants to see what was happening at the same time.

The input parameter is a time in minutes. We used 3600 seconds as the default as this is what was used in Easton’s
code. This value can be changed by the user. The output contains a record for each detection for which there has been
more than xx minutes since the previous detection (of that tag/animal) and more than the same amount of time until
the next detection. It ignores which receiver the detection occurred at. That is all it does, nothing more and nothing
less. Details are in Filter Tool.

Two other filtering tools are available as well, one based on distance alone and one based on velocity. They can be
found at Filter Tools as well.

11

resonate Documentation, Release v1.0.9

12 Chapter 5. Filtering

CHAPTER 6

Distance Matrix

This takes a DataFrame created by the White-Mihoff False Filtering tool. The file contains rows of station pairs with
the straight line distance between them calculated in metres. A station pair will only be in the file if an animal traveled
between the stations. If an animal goes from stn1 to stn2 and then to stn3, pairs stn1-stn2 and stn2-stn3 will be in
the file. If no animal goes between stn1 and stn3, that pair will not be in the file. The tool also takes a file that the
researcher provides of ‘real distances’. The output will be a file which looks like the first file with the ‘real distance’
column updated. Details are in Distance Matrix Tool

13

resonate Documentation, Release v1.0.9

14 Chapter 6. Distance Matrix

CHAPTER 7

Interval Data

(Mihoff, M., Jones, B., Bajona, L., Halfyard, E. 2014. Mihoff Interval Data Tool)

This tool will take a DataFrame of compressed detections and a distance matrix and output an interval DataFrame.
The Interval DataFrame will contain records of the animal id, the arrival time at stn1, the departure time at stn1, the
detection count at stn1, the arrival time at stn2, time between detections at the two stations, the interval in seconds, the
distance between stations, and the velocity of the animal in m/s. Details are in Interval Data Tool.

15

resonate Documentation, Release v1.0.9

16 Chapter 7. Interval Data

CHAPTER 8

Residence Index

This residence index tool will take a compressed or uncompressed detection file and caculate the residency index for
each station/receiver in the detections. A CSV file will be written to the data directory for future use. A Pandas
DataFrame is returned from the function, which can be used to plot the information. The information passed to the
function is what is used to calculate the residence index, make sure you are only passing the data you want taken into
consideration for the residence index (i.e. species, stations, tags, etc.). Details in Residence Index Tool.

17

resonate Documentation, Release v1.0.9

18 Chapter 8. Residence Index

CHAPTER 9

Receiver Efficiency Index

(Ellis, R., Flaherty-Walia, K., Collins, A., Bickford, J., Walters Burnsed, Lowerre-Barbieri S. 2018. Acoustic telemetry
array evolution: from species- and project-specific designs to large-scale, multispecies, cooperative networks)

The receiver efficiency index is number between 0 and 1 indicating the amount of relative activity at each receiver
compared to the entire set of receivers, regardless of positioning. The function takes a set detections and a deployment
history of the receivers to create a context for the detections. Both the amount of unique tags and number of species
are taken into consideration in the calculation. For the exact method, see the details in Receiver Efficiency Index.

19

https://doi.org/10.1016/j.fishres.2018.09.015
https://doi.org/10.1016/j.fishres.2018.09.015

resonate Documentation, Release v1.0.9

20 Chapter 9. Receiver Efficiency Index

CHAPTER 10

Unique Id

This tool will add a column to any file. The unique id will be sequential integers. No validation is done on the input
file. Details in Unique Detections ID.

21

resonate Documentation, Release v1.0.9

22 Chapter 10. Unique Id

CHAPTER 11

Visual Timeline

This tool takes a detections extract file and generates a Plotly animated timeline, either in place in an iPython notebook
or exported out to an HTML file. Details in Visual Timeline.

23

resonate Documentation, Release v1.0.9

24 Chapter 11. Visual Timeline

CHAPTER 12

Contents:

12.1 Installation

resonATe can be installed using Pip or through a Conda environment.

12.1.1 Conda

conda config --add channels conda-forge
conda install resonate

12.1.2 Pip

pip install resonate

12.2 Preparing Data

resonATe requires your acoustic telemetry data to have specific column headers. The column headers are the same
ones used by the Ocean Tracking Network for their detection extracts.

The columns you need are as follows:

• catalognumber - A unique identifier assigned to an animal.

• station - A unique identifier for the station or mooring where the receiver was located. This column is used in
resonATe for grouping detections which should be considered to have occurred in the same place.

• datecollected - Date and time of release or detection, all of which have the same timezone (example format:
2018-02-02 04:09:45).

• longitude - The receiver location at time of detection in decimal degrees.

25

resonate Documentation, Release v1.0.9

• latitude - The receiver location at time of detection in decimal degrees.

• scientificname - The taxonmoic name for the animal detected.

• fieldnumber - The unique number for the tag/device attached to the animal.

• unqdetecid - A unique value assigned to each record in the data. resonATe includes a function to generate this
column if needed. Details in Unique Detections ID.

The Receiver Efficiency Index also needs a deployment history for stations. The columns for deployments are as
follows:

• station_name - A unique identifier for the station or mooring where the receiver was located. This column is
used in resonATe for grouping detections which should be considered to have occurred in the same place.

• deploy_date - A date of when the receiver was placed in a water or is active (example format: 2018-02-02).

• recovery_date - A date of when the receiver was removed from the water or became inactive (example format:
2018-02-02).

• last_download - A date of the last time data was retrieved from the receiver (example format: 2018-02-02).

All other columns are not required and will not affect the functions; however, they may be used in some functions. For
example, receiver_group can be used color code data in the Abacus Plot.

Warning: Detection records from mobile receivers, i.e. from receivers attached to gliders or animals, as well as
satellite transmitter detections, will not necessarily be appropriate or compatible for use with all of these tools.

12.2.1 Renaming Columns

Pandas provides a rename() function that can be implemented as follows:

import pandas as pd

df = pd.read_csv('/path/to/detections.csv')

df.rename(index=str, columns={
'your_animal_id_column':'catalognumber',
'your_station_column':'station',
'your_date_time_column':'datecollected',
'your_longitude_column':'longitude',
'your_latitude_column':'latitude',
'your_unique_id_column':'unqdetecid'

}, inplace=True)

26 Chapter 12. Contents:

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename.html

resonate Documentation, Release v1.0.9

12.2. Preparing Data 27

resonate Documentation, Release v1.0.9

12.2.2 Example Dataset

cata-
lognum-
ber

scien-
tific-
name

com-
mon-
name

re-
ceiver_group

sta-
tion

datecol-
lected

time-
zone

lon-
gi-
tude

lati-
tude

unqdetecid

NSBS-
Sophie

Prionace
glauca

blue
shark

HFX HFX2482014-
06-08
20:10

UTC -
63.50002

42.89487HFX-A69-9001-
26655-170932

NSBS-
Sophie

Prionace
glauca

blue
shark

HFX HFX2482014-
06-08
20:12

UTC -
63.50002

42.89487HFX-A69-9001-
26655-170933

NSBS-
Sophie

Prionace
glauca

blue
shark

HFX HFX2492014-
06-08
20:12

UTC -
63.50002

42.88764HFX-A69-9001-
26655-170934

NSBS-
Sophie

Prionace
glauca

blue
shark

HFX HFX2482014-
06-08
20:14

UTC -
63.50002

42.89487HFX-A69-9001-
26655-170935

NSBS-
Sophie

Prionace
glauca

blue
shark

HFX HFX2482014-
06-08
20:16

UTC -
63.50002

42.89487HFX-A69-9001-
26655-170936

NSBS-
Sophie

Prionace
glauca

blue
shark

HFX HFX2482014-
06-08
20:17

UTC -
63.50002

42.89487HFX-A69-9001-
26655-170937

NSBS-
Sophie

Prionace
glauca

blue
shark

HFX HFX2482014-
06-08
20:27

UTC -
63.50002

42.89487HFX-A69-9001-
26655-170938

NSBS-
Sophie

Prionace
glauca

blue
shark

HFX HFX2472014-
06-08
20:28

UTC -
63.49995

42.90203HFX-A69-9001-
26655-170939

NSBS-
Lola

Prionace
glauca

blue
shark

HFX HFX1192014-
06-20
11:36

UTC -
63.3331

43.79986HFX-A69-9001-
26667-173924

NSBS-
Lola

Prionace
glauca

blue
shark

HFX HFX1182014-
06-20
11:37

UTC -
63.32552

43.8043HFX-A69-9001-
26667-171528

NSBS-
Lola

Prionace
glauca

blue
shark

HFX HFX1192014-
06-20
11:38

UTC -
63.3331

43.79986HFX-A69-9001-
26667-173925

NSBS-
Lola

Prionace
glauca

blue
shark

HFX HFX1182014-
06-20
11:38

UTC -
63.32552

43.8043HFX-A69-9001-
26667-171529

NSBS-
Lola

Prionace
glauca

blue
shark

HFX HFX1192014-
06-20
11:40

UTC -
63.3331

43.79986HFX-A69-9001-
26667-173926

NSBS-
Lola

Prionace
glauca

blue
shark

HFX HFX1182014-
06-20
11:41

UTC -
63.32552

43.8043HFX-A69-9001-
26667-171530

NSBS-
Lola

Prionace
glauca

blue
shark

HFX HFX1192014-
06-20
11:42

UTC -
63.3331

43.79986HFX-A69-9001-
26667-173927

NSBS-
Lola

Prionace
glauca

blue
shark

HFX HFX1182014-
06-20
11:43

UTC -
63.32552

43.8043HFX-A69-9001-
26667-171531

NSBS-
Lola

Prionace
glauca

blue
shark

HFX HFX1192014-
06-20
11:44

UTC -
63.3331

43.79986HFX-A69-9001-
26667-173928

NSBS-
Lola

Prionace
glauca

blue
shark

HFX HFX1192014-
06-20
11:46

UTC -
63.3331

43.79986HFX-A69-9001-
26667-173929

NSBS-
Ophelia

Prionace
glauca

blue
shark

HFX HFX1822014-
06-21
3:21

UTC -
63.50012

43.36992HFX-A69-9001-
26669-173703

NSBS-
Ophelia

Prionace
glauca

blue
shark

HFX HFX1832014-
06-21
3:22

UTC -
63.50003

43.3631HFX-A69-9001-
26669-174594

NSBS-
Ophelia

Prionace
glauca

blue
shark

HFX HFX1832014-
06-21
3:24

UTC -
63.50003

43.3631HFX-A69-9001-
26669-174595

NSBS-
Ophelia

Prionace
glauca

blue
shark

HFX HFX1832014-
06-21
3:26

UTC -
63.50003

43.3631HFX-A69-9001-
26669-174596

NSBS-
Ophelia

Prionace
glauca

blue
shark

HFX HFX1832014-
06-21
3:28

UTC -
63.50003

43.3631HFX-A69-9001-
26669-174597

NSBS-
Ophelia

Prionace
glauca

blue
shark

HFX HFX1822014-
06-21
3:29

UTC -
63.50012

43.36992HFX-A69-9001-
26669-173704

NSBS-
Ophelia

Prionace
glauca

blue
shark

HFX HFX1832014-
06-21
3:30

UTC -
63.50003

43.3631HFX-A69-9001-
26669-174598

NSBS-
Ophelia

Prionace
glauca

blue
shark

HFX HFX1822014-
06-21
3:30

UTC -
63.50012

43.36992HFX-A69-9001-
26669-173705

NSBS-
Ophelia

Prionace
glauca

blue
shark

HFX HFX1822014-
06-21
3:38

UTC -
63.50012

43.36992HFX-A69-9001-
26669-173706

NSBS-
Ophelia

Prionace
glauca

blue
shark

HFX HFX1822014-
06-21
3:43

UTC -
63.50012

43.36992HFX-A69-9001-
26669-173707

28 Chapter 12. Contents:

resonate Documentation, Release v1.0.9

12.3 Abacus Plot

The abacus plot is a way to plot annimal along time. The function uses Plotly to place your points on a scatter plot.
ycolumn is used as the y axis and datecollected is used as the x axis. color_column is used to group
detections together and assign them a color.

Warning: Input files must include datecollected as a column.

from resonate.abacus_plot import abacus_plot
import pandas as pd

df = pd.read_csv('/path/to/detections.csv')

To display the plot in iPython use:

abacus_plot(df, ycolumn='catalognumber', color_column='receiver_group')

Or use the standard plotting function to save as HTML:

abacus_plot(df, ipython_display=False, filename='example.html')

Below is the sample output for blue sharks off of the coast of Nova Scotia.

12.3.1 Abacus Plot Function

abacus_plot.abacus_plot(detections, ycolumn=’catalognumber’, color_column=None,
ipython_display=True, title=’Abacus Plot’, filename=None)

Creates a plotly abacus plot from a pandas dataframe

Parameters

• detections – detection dataframe

• ycolumn – the series/column for the y axis of the plot

• color_column – the series/column to group by and assign a color

• ipython_display – a boolean to show in a notebook

• title – the title of the plot

• filename – Plotly filename to write to

Returns A plotly scatter plot

12.4 Bubble Plot

The bubble plot function returns a Plotly scatter plot layered ontop of a map. The color of the markers will indicate the
number of detections at each location. Alternatively, you can indicate the number of individuals seen at each location
by using type = 'individual'.

Warning: Input files must include station , catalognumber, unqdetecid, latitude, longitude,
and datecollected as columns.

12.3. Abacus Plot 29

resonate Documentation, Release v1.0.9

from resonate.bubble_plot import bubble_plot
import pandas as pd
import plotly.offline as py

df = pd.read_csv('/path/to/detections.csv')

To display the plot in iPython use:

bubble_plot(df)

Or use the standard plotting function to save as HTML:

bubble_plot(df,ipython_display=False, filename='/path_to_plot.html')

You can also do your count by number of individuals by using type = 'individual:

bubble_plot(df, type='individual')

12.4.1 Mapbox

Alternatively you can use a Mapbox access token plot your map. Mapbox is much for responsive than standard
Scattergeo plot.

Example Code

mapbox_access_token = 'ADD_YOUR_TOKEN_HERE'
bubble_plot(df, mapbox_token=mapbox_access_token)

Below is the sample output for blue sharks off of the coast of Nova Scotia.

12.4.2 Bubble Plot Function

bubble_plot.bubble_plot(detections, type=’detections’, ipython_display=True, title=’Bubble
Plot’, height=700, width=1000, plotly_geo=None, filename=None,
mapbox_token=None, marker_size=10, colorscale=’Viridis’)

Creates a plotly abacus plot from a pandas dataframe

Parameters

• detections – detection dataframe

• ipython_display – a boolean to show in a notebook

• title – the title of the plot

• height – the height of the plotl

• width – the width of the plotly

• plotly_geo – an optional dictionary to controle the geographix aspects of the plot

• filename – Plotly filename to write to

• mapbox_token – A string of mapbox access token

• marker_size – An int to indicate the diameter in pixels

30 Chapter 12. Contents:

resonate Documentation, Release v1.0.9

• colorscale – A string to indicate the color index

Returns A plotly geoscatter plot or mapbox plot

12.5 Cohort

The tool takes a dataframe of compressed detections and a time parameter in minutes. It identifies groups of animals
traveling together. Each station an animal visits is checked for other animals detected there within the specified time
period.

The function returns a dataframe which you can use to help identify animal cohorts. The cohort is created from the
compressed data that is a result from the compress_detections() function. Pass the compressed dataframe into
the cohort() function along with a time interval in seconds (default is 3600) to create the cohort dataframe.

Warning:

Input files must include station, catalognumber, seq_num, unqdetecid, and datecollected as
columns.

from resonate.cohorts import cohort
from resonate.compress import compress_detections
import pandas as pd

time_interval = 3600 # in seconds

data = pd.read_csv('/path/to/detections.csv')

compressed_df = compress_detections(data)

cohort_df = cohort(compressed_df, time_interval)

cohort_df

You can use the Pandas DataFrame.to_csv() function to output the file to a desired location.

Saves the cohort file
cohort_df.to_csv('/path/to/output.csv', index=False)

12.5.1 Cohort Functions

cohorts.cohort(compressed_df, interval_time=3600)
Creates a dataframe of cohorts using a compressed detection file

Parameters

• compressed_df – compressed dataframe

• interval_time – cohort detection time interval (in seconds)

Returns

cohort dataframe with the following columns

• anml_1

• anml_1_seq

12.5. Cohort 31

resonate Documentation, Release v1.0.9

• station

• anml_2

• anml_2_seq

• anml_2_arrive

• anml_2_depart

• anml_2_startunqdetecid

• anml_2_endunqdetecid

• anml_2_detcount

12.6 Compressing Detections

Compressing detections is done by looking at the detection times and locations of an animal. Any detections that occur
successively in time, and the time between detections does not exceed the timefilter, in the same location are
combined into a single detection with a start and end time. The result is a compressed detections Pandas DataFrame.

Compression is the first step of the Mihoff Interval Data Tool. Compressed detection DataFrames are needed for the
tools, such as interval and cohort.

Warning: Input files must include datecollected, catalognumber, and unqdetecid as columns.

from resonate.compress import compress_detections
import pandas as pd

detections = pd.read_csv('/path/to/data.csv')

compressed = compress_detections(detections=detections)

You can use the Pandas DataFrame.to_csv() function to output the file to a desired location.

compressed.to_csv('/path/to/output.csv', index=False)

12.6.1 Compression Functions

compress.compress_detections(detections, timefilter=3600)
Creates compressed dataframe from detection dataframe

Parameters

• detections – detection dataframe

• timefilter – A maximum amount of time in seconds that can pass before a new detction
event is started

Returns A Pandas DataFrame matrix of detections events

32 Chapter 12. Contents:

resonate Documentation, Release v1.0.9

12.7 Filtering Detections on Distance / Time

12.7.1 White/Mihoff Filter

(White, E., Mihoff, M., Jones, B., Bajona, L., Halfyard, E. 2014. White-Mihoff False Filtering Tool)

OTN has developed a tool which will assist with filtering false detections. The first level of filtering involves identifying
isolated detections. The original concept came from work done by Easton White. He was kind enough to share his
research database with OTN. We did some preliminary research and developed a proposal for a filtering tool based on
what Easton had done. This proof of concept was presented to Steve Kessel and Eddie Halfyard in December 2013
and a decision was made to develop a tool for general use.

This is a very simple tool. It will take an input file of detections and based on an input parameter will identify suspect
detections. The suspect detections will be put into a dataframe which the user can examine. There will be enough
information for each suspect detection for the user to understand why it was flagged. There is also enough information
to be able to reference the detection in the original file if the user wants to see what was happening at the same time.

The input parameter is a time in seconds. We used 3600 seconds as the default as this is what was used in Easton’s
code. This value can be changed by the user. The output contains a record for each detection for which there has been
more than xx seconds since the previous detection (of that tag/animal) and more than the same amount of time until
the next detection. It ignores which receiver the detection occurred at. That is all it does, nothing more and nothing
less.

Below the interval is set to 3600 seconds and is not using a a user specified suspect file. The function will also create
a distance matrix.

Warning: Input files must include datecollected, catalognumber, station and unqdetecid as
columns.

from resonate.filters import get_distance_matrix
from resonate.filters import filter_detections
import pandas as pd

detections = pd.read_csv('/path/to/detections.csv')

time_interval = 3600 # in seconds

SuspectFile = None

CreateDistanceMatrix = True

filtered_detections = filter_detections(detections,
suspect_file=SuspectFile,
min_time_buffer=time_interval,
distance_matrix=CreateDistanceMatrix)

You can use the Pandas DataFrame.to_csv() function to output the file to a desired location.

filtered_detections['filtered'].to_csv('/path/to/output.csv', index=False)

filtered_detections['suspect'].to_csv('/path/to/output.csv', index=False)

filtered_detections['dist_mtrx'].to_csv('/path/to/output.csv', index=False)

12.7. Filtering Detections on Distance / Time 33

resonate Documentation, Release v1.0.9

12.7.2 Distance Filter

The distance filter will separate detections based only on distance. The maximum_distance argument defaults to
100,000 meters (or 100 kilometers), but can be adjusted. Any detection where the succeeding and preceding detections
are more than the maximum_distance away will be considered suspect.

Warning: Input files must include datecollected, catalognumber, station and unqdetecid as
columns.

from resonate.filters import distance_filter
import pandas as pd

detections = pd.read_csv('/path/to/detections.csv')

filtered_detections = distance_filter(detections)

You can use the Pandas DataFrame.to_csv() function to output the file to a desired location.

filtered_detections['filtered'].to_csv('/path/to/output.csv', index=False)

filtered_detections['suspect'].to_csv('/path/to/output.csv', index=False)

12.7.3 Velocity Filter

The velocity filter will separate detections based on the animal’s velocity. The maximum_velocity argument
defaults to 10 m/s, but can be adjusted. Any detection where the succeeding and preceding velocities of an animal are
more than the maximum_velocity will be considered suspect.

Warning: Input files must include datecollected, catalognumber, station and unqdetecid as
columns.

from resonate.filters import velocity_filter
import pandas as pd

detections = pd.read_csv('/path/to/detections.csv')

filtered_detections = velocity_filter(detections)

You can use the Pandas DataFrame.to_csv() function to output the file to a desired location.

filtered_detections['filtered'].to_csv('/path/to/output.csv', index=False)

filtered_detections['suspect'].to_csv('/path/to/output.csv', index=False)

12.7.4 Filtering Functions

filters.distance_filter(detections, maximum_distance=100000)

Parameters

34 Chapter 12. Contents:

resonate Documentation, Release v1.0.9

• detections – a Pandas DataFrame of acoustic detection

• maximum_distance – a umber in meters, default is 100000

Returns A list of Pandas DataFrames of filtered detections and suspect detections

filters.filter_detections(detections, suspect_file=None, min_time_buffer=3600, dis-
tance_matrix=False)

Filters isolated detections that are more than min_time_buffer apart from other dets. for a series of detections in
detection_file. Returns Filtered and Suspect dataframes. suspect_file can be a file of existing suspect detections
to remove before filtering. dist_matrix is created as a matrix of between-station distances from stations defined
in the input file.

Parameters

• detections – A Pandas DataFrame of acoustic detections

• suspect_file – Path to a user specified suspect file, same format as the detections

• min_time_buffer – The minimum of time required for outlier detections in seconds

• distance_matrix – A boolean of whether or not to generate the distance matrix

Returns A list of Pandas DataFrames of filtered detections, suspect detections, and a distance matrix

filters.get_distance_matrix(detections)
Creates a distance matrix of all stations in the array or line.

Parameters detections – a Pandas DataFrame of detections

Returns A Pandas DataFrame matrix of station to station distances

filters.velocity_filter(detections, maximum_velocity=10)

Parameters

• detections –

• maximum_velocity –

Returns A list of Pandas DataFrames of filtered detections and suspect detections

12.8 Interval Data

interval_data() takes a compressed detections DataFrame, a distance matrix, and a detection radius DataFrame
and creates an interval data DataFrame.

Intervals are lengths of time in which a station detected an animal. Many consecutive detections of an animal are
replaced by one interval.

Warning: Input files must include datecollected, catalognumber, and unqdetecid as columns.

from resonate.filters import get_distance_matrix
from resonate.compress import compress_detections
from resonate.interval_data_tool import interval_data
import pandas as pd
import geopy

input_file = pd.read_csv("/path/to/detections.csv")

(continues on next page)

12.8. Interval Data 35

resonate Documentation, Release v1.0.9

(continued from previous page)

compressed = compress_detections(input_file)
matrix = get_distance_matrix(input_file)

Set the station radius for each station name.

detection_radius = 400

station_det_radius = pd.DataFrame([(x, geopy.distance.Distance(detection_radius/1000.
→˓0))

for x in matrix.columns.tolist()], columns=[
→˓'station','radius'])

station_det_radius.set_index('station', inplace=True)

station_det_radius

You can modify individual stations if needed by using DatraFrame.set_value() from Pandas.

station_name = 'HFX001'

station_detection_radius = 500

station_det_radius.at[station_name, 'radius'] = geopy.distance.Distance(station_
→˓detection_radius/1000.0)

Create the interval data by passing the compressed detections, the matrix, and the station radii.

interval = interval_data(compressed_df=compressed, dist_matrix_df=matrix, station_
→˓radius_df=station_det_radius)

interval

You can use the Pandas DataFrame.to_csv() function to output the file to a desired location.

interval.to_csv('/path/to/output.csv', index=False)

12.8.1 Interval Data Functions

interval_data_tool.interval_data(compressed_df, dist_matrix_df, station_radius_df=None)
Creates a detection interval file from a compressed detection, distance matrix and station detection radius
DataFrames

Parameters

• compressed_df – compressed detection dataframe

• dist_matrix_df – station distance matrix dataframe

• station_radius – station distance radius dataframe

Returns interval detection Dataframe

12.9 Residence Index

Kessel et al. Paper https://www.researchgate.net/publication/279269147

36 Chapter 12. Contents:

https://www.researchgate.net/publication/279269147

resonate Documentation, Release v1.0.9

This residence index tool will take a compressed or uncompressed detection file and caculate the residency index for
each station/receiver in the detections. A CSV file will be written to the data directory for future use. A Pandas
DataFrame is returned from the function, which can be used to plot the information. The information passed to the
function is what is used to calculate the residence index, make sure you are only passing the data you want taken
into consideration for the residence index (i.e. species, stations, tags, etc.).

detections: The CSV file in the data directory that is either compressed or raw. If the file is not compressed please
allow the program time to compress the file and add the rows to the database. A compressed file will be created in the
data directory. Use the compressed file for any future runs of the residence index function.

calculation_method: The method used to calculate the residence index. Methods are:

• kessel

• timedelta

• aggregate_with_overlap

• aggregate_no_overlap.

project_bounds: North, South, East, and West bounding longitudes and latitudes for visualization.

The calculation methods are listed and described below before they are called. The function will default to the Kessel
method when nothing is passed.

Below is an example of inital variables to set up, which are the detection file and the project bounds.

Warning: Input files must include datecollected, station, longitude, latitude,
catalognumber, and unqdetecid as columns.

from resonate import residence_index as ri
import pandas as pd

detections = pd.read_csv('/Path/to/detections.csv')

12.9.1 Kessel Residence Index Calculation

The Kessel method converts both the startdate and enddate columns into a date with no hours, minutes, or seconds.
Next it creates a list of the unique days where a detection was seen. The size of the list is returned as the total number
of days as an integer. This calculation is used to determine the total number of distinct days (T) and the total number
of distinct days per station (S).

𝑅𝐼 = 𝑆
𝑇

RI = Residence Index

S = Distinct number of days detected at the station

T = Distinct number of days detected anywhere on the array

Warning: Possible rounding error may occur as a detection on 2016-01-01 23:59:59 and a detection on
2016-01-02 00:00:01 would be counted as two days when it is really 2-3 seconds.

12.9. Residence Index 37

resonate Documentation, Release v1.0.9

Kessel RI Example Code

kessel_ri = ri.residency_index(detections, calculation_method='kessel')

ri.plot_ri(kessel_ri)

12.9.2 Timedelta Residence Index Calculation

The Timedelta calculation method determines the first startdate of all detections and the last enddate of all detections.
The time difference is then taken as the values to be used in calculating the residence index. The timedelta for each
station is divided by the timedelta of the array to determine the residence index.

𝑅𝐼 = Δ𝑆
Δ𝑇

RI = Residence Index

∆𝑆 = Last detection time at a station - First detection time at the station

∆𝑇 = Last detection time on an array - First detection time on the array

Timedelta RI Example Code

timedelta_ri = ri.residency_index(detections, calculation_method='timedelta')

ri.plot_ri(timedelta_ri)

12.9.3 Aggregate With Overlap Residence Index Calculation

The Aggregate With Overlap calculation method takes the length of time of each detection and sums them together. A
total is returned. The sum for each station is then divided by the sum of the array to determine the residence index.

RI = 𝐴𝑤𝑂𝑆
𝐴𝑤𝑂𝑇

RI = Residence Index

AwOS = Sum of length of time of each detection at the station

AwOT = Sum of length of time of each detection on the array

Aggregate With Overlap RI Example Code

with_overlap_ri = ri.residency_index(detections, calculation_method='aggregate_with_
→˓overlap')

ri.plot_ri(with_overlap_ri)

12.9.4 Aggregate No Overlap Residence Index Calculation

The Aggregate No Overlap calculation method takes the length of time of each detection and sums them together.
However, any overlap in time between one or more detections is excluded from the sum.

For example, if the first detection is from 2016-01-01 01:02:43 to 2016-01-01 01:10:12 and the second detection is
from 2016-01-01 01:09:01 to 2016-01-01 01:12:43, then the sume of those two detections would be 10 minutes.

38 Chapter 12. Contents:

resonate Documentation, Release v1.0.9

A total is returned once all detections of been added without overlap. The sum for each station is then divided by the
sum of the array to determine the residence index.

RI = 𝐴𝑛𝑂𝑆
𝐴𝑛𝑂𝑇

RI = Residence Index

AnOS = Sum of length of time of each detection at the station, excluding any overlap

AnOT = Sum of length of time of each detection on the array, excluding any overlap

Aggregate No Overlap RI Example Code

no_overlap_ri = ri.residency_index(detections, calculation_method='aggregate_no_
→˓overlap')

ri.plot_ri(no_overlap_ri, title="ANO RI")

12.9.5 Mapbox

Alternatively you can use a Mapbox access token plot your map. Mapbox is much for responsive than standard
Scattergeo plot.

Mapbox Example Code

mapbox_access_token = 'YOUR MAPBOX ACCESS TOKEN HERE'
kessel_ri = ri.residency_index(detections, calculation_method='kessel')
ri.plot_ri(kessel_ri, mapbox_token=mapbox_access_token,marker_size=40, scale_
→˓markers=True)

12.9.6 Residence Index Functions

residence_index.aggregate_total_no_overlap(detections)
The function below aggregates timedelta of startdate and enddate, excluding overlap between detections. Any
overlap between two detections is converted to a new detection using the earlier startdate and the latest enddate.
If the startdate and enddate are the same, a timedelta of one second is assumed.

Parameters detections – pandas DataFrame pulled from the compressed detections CSV

Returns An float in the number of days

residence_index.aggregate_total_with_overlap(detections)
The function below aggregates timedelta of startdate and enddate of each detection into a final timedelta then
returns a float of the number of days. If the startdate and enddate are the same, a timedelta of one second is
assumed.

Parameters detections – Pandas DataFrame pulled from the compressed detections CSV

Returns An float in the number of days

residence_index.get_days(dets, calculation_method=’kessel’)
Determines which calculation method to use for the residency index.

Wrapper method for the calulation methods above.

Parameters

12.9. Residence Index 39

resonate Documentation, Release v1.0.9

• dets – A Pandas DataFrame pulled from the compressed detections CSV

• calculation_method – determines which method above will be used to count total
time and station time

Returns An int in the number of days

residence_index.get_station_location(station, detections)
Returns the longitude and latitude of a station/receiver given the station and the table name.

Parameters

• station – String that contains the station name

• detections – the table name in which to find the station

Returns A Pandas DataFrame of station, latitude, and longitude

residence_index.plot_ri(ri_data, ipython_display=True, title=’Bubble Plot’, height=700,
width=1000, plotly_geo=None, filename=None, marker_size=6,
scale_markers=False, colorscale=’Viridis’, mapbox_token=None)

Parameters

• ri_data – A Pandas DataFrame generated from residency_index()

• ipython_display – a boolean to show in a notebook

• title – the title of the plot

• height – the height of the plotly

• width – the width of the plotly

• plotly_geo – an optional dictionary to control the geographic aspects of the plot

• filename – Plotly filename to write to

• mapbox_token – A string of mapbox access token

• marker_size – An int to indicate the diameter in pixels

• scale_markers – A boolean to indicate whether or not markers are scaled by their value

• colorscale – A string to indicate the color index. See here for options: https:
//community.plot.ly/t/what-colorscales-are-available-in-plotly-and-which-are-the-default/
2079

Returns A plotly geoscatter

residence_index.residency_index(detections, calculation_method=’kessel’)
This function takes in a detections CSV and determines the residency index for reach station.

Residence Index (RI) was calculated as the number of days an individual fish was detected at each receiver
station divided by the total number of days the fish was detected anywhere on the acoustic array. - Kessel et al.

Parameters

• detections – CSV Path

• calculation_method – determines which method above will be used to count total
time and station time

Returns

A residence index DataFrame with the following columns

• days_detected

40 Chapter 12. Contents:

https://community.plot.ly/t/what-colorscales-are-available-in-plotly-and-which-are-the-default/2079
https://community.plot.ly/t/what-colorscales-are-available-in-plotly-and-which-are-the-default/2079
https://community.plot.ly/t/what-colorscales-are-available-in-plotly-and-which-are-the-default/2079

resonate Documentation, Release v1.0.9

• latitude

• longitude

• residency_index

• station

residence_index.total_days_count(detections)
The function below takes a Pandas DataFrame and determines the number of days any detections were seen on
the array.

The function converst both the startdate and enddate columns into a date with no hours, minutes, or seconds.
Next it creates a list of the unique days where a detection was seen. The size of the list is returned as the total
number of days as an integer.

* NOTE ** Possible rounding error may occur as a detection on 2016-01-01 23:59:59 and a detection on 2016-
01-02 00:00:01 would be counted as days when it is really 2-3 seconds.

Parameters detections – Pandas DataFrame pulled from the compressed detections CSV

Returns An int in the number of days

residence_index.total_days_diff(detections)
Determines the total days difference.

The difference is determined by the minimal startdate of every detection and the maximum enddate of every
detection. Both are converted into a datetime then subtracted to get a timedelta. The timedelta is converted to
seconds and divided by the number of seconds in a day (86400). The function returns a floating point number
of days (i.e. 503.76834).

Parameters detections – Pandas DataFrame pulled from the compressed detections CSV

Returns An float in the number of days

12.10 Receiver Efficiency Index

The receiver efficiency index is number between 0 and 1 indicating the amount of relative activity at each receiver
compared to the entire set of receivers, regardless of positioning. The function takes a set detections and a deployment
history of the receivers to create a context for the detections. Both the amount of unique tags and number of species
are taken into consideration in the calculation.

The receiver efficiency index implement is implemented based on the paper Acoustic telemetry array evolution: From
species- and project-specific designs to large-scale, multispecies, cooperative networks. Each receiver’s index is cal-
culated on the formula of:

REI = 𝑇𝑟

𝑇𝑎
× 𝑆𝑟

𝑆𝑎
× 𝐷𝐷𝑟

𝐷𝐷𝑎
× 𝐷𝑎

𝐷𝑟

• REI = Receiver Efficiency Index

• 𝑇𝑟 = The number of tags detected on the receievr

• 𝑇𝑎 = The number of tags detected across all receivers

• 𝑆𝑟 = The number of species detected on the receiver

• 𝑆𝑎 = The number of species detected across all receivers

• 𝐷𝐷𝑎 = The number of unique days with detections across all receivers

• 𝐷𝐷𝑟 = The number of unique days with detections on the receiver

• 𝐷𝑎 = The number of days the array was active

12.10. Receiver Efficiency Index 41

https://doi.org/10.1016/j.fishres.2018.09.015
https://doi.org/10.1016/j.fishres.2018.09.015

resonate Documentation, Release v1.0.9

• 𝐷𝑟 = The number of days the receiver was active

Each REI is then normalized against the sum of all considered stations. The result is a number between 0 and 1
indicating the relative amount of activity at each receiver.

Warning: Detection input files must include datecollected, fieldnumber, station, and
scientificname as columns and deployment input files must include station_name, deploy_date,
last_download, and recovery_date as columns.

REI() takes two arguments. The first is a dataframe of detections the detection timstamp, the station identifier, the
species, and the tag identifier. The next is a dataframe of deployments for each station. The station name should match
the stations in the detections. The deployments need to include a deployment date and recovery date or last download
date. Details on the columns metnioned see the preparing data section.

Warning: This function assumes that no deployments for single station overlap. If deployments do overlap, the
overlapping days will be counted twice.

from resonate.receiver_efficiency import REI

detections = pd.read_csv('/path/to/detections.csv')
deployments = pd.read_csv('/path/to/deployments.csv')

station_REIs = REI(detections = detections, deployments = deployments)

12.10.1 Residence Index Functions

receiver_efficiency.REI(detections, deployments)
Calculates a returns a list of each station and the REI (defined here):

Parameters

• detections – a pandas DataFrame of detections

• deployments – a pandas DataFrame of station deployment histories

Returns a pandas DataFrame of station, REI, latitude, and longitude

12.11 Subsetting Data

Sometimes there is too much data for a visualization tool to handle, or you wish to only take a certain subset of your
input data and apply it elsewhere.

These examples, written in Python and leveraging the Pandas data manipulation package, are meant as a starting point.
More complex operations are possible in Pandas, but these should form a baseline of understanding that will cover the
most common operations.

import pandas as pd
filename = "/path/to/data.csv"
data = pd.read_csv(directory+filename)

42 Chapter 12. Contents:

resonate Documentation, Release v1.0.9

12.11.1 Subsetting data by date range

Provide a date field, as well as starting and ending date range. By default, the detection date column of a detection
extract file is provided.

Enter the column name that contains the date you wish to evaluate
datecol = 'datecollected'
Enter the start date in the following format
startdate = "YYYY-MM-DD"

Enter the end date in the following format
enddate = "YYYY-MM-DD"

Subsets the dat between the two indicated dates uding the datecollected column
data_date_subset = data[(data[datecol] > startdate) & (data[datecol] < enddate)]

Output the subset data to a new CSV in the indicated directory
data_date_subset.to_csv(directory+startdate+"_to_"+enddate+"_"+filename, index=False)

12.11.2 Subsetting on column value

Provide the column you expect to have a certain value and the value you’d like to create a subset from.

Enter the column you want to subset
column=''

Enter the value you want to find in the above column
value=''

The following pulls the new data subset into a Pandas DataFrame
data_column_subset=data[data[column]==value]

Output the subset data to a new CSV in the indicated directory
data_column_subset.to_csv(directory+column+"_"+value.replace(" ", "_")+"_"+filename,
→˓index=False)

12.12 Unique Detections ID

Adds the uniquecid column to your input file. The uniquecid column assigns every detection record a unique numer-
ical value. This column is needed in order to perform operations, such as filter and compression functions.

The code below will add a unique detection ID column and return the Pandas dataframe.

from resonate.uniqueid import add_unqdetecid

input_file = '/path/to/detections.csv'

unqdet_det = add_unqdetecid(input_file);

You can use the Pandas DataFrame.to_csv() function to output the file to a desired location.

unqdet_det.to_csv('/path/to/output.csv', index=False)

12.12. Unique Detections ID 43

resonate Documentation, Release v1.0.9

12.12.1 Unique Detections Function

uniqueid.add_unqdetecid(input_file, encoding=’utf-8-sig’)
Adds the unqdetecid column to an input csv file. The resulting file is returned as a pandas DataFrame object.

Parameters

• input_file – Path to the input csv file.

• encoding – source encoding for the input file (Default utf8-bom)

Returns padnas DataFrame including unqdetecid column.

12.13 Visual Timeline

This tool takes a detections extract file and generates a Plotly animated timeline, either in place in an iPython notebook
or exported out to an HTML file.

Warning: Input files must include datecollected, catalognumber, station, latitude, and
longitude as columns.

from resonate.visual_timeline import timeline
import pandas as pd
detections = pd.read_csv("/path/to/detection.csv")
timeline(detections, "Timeline")

12.13.1 Exporting to an HTML File

You can export the map to an HTML file by setting ipython_display to False.

from resonate.visual_timeline import timeline
import pandas as pd
detections = pd.read_csv("/path/to/detection.csv")
timeline(detections, "Timeline", ipython_display=False)

12.13.2 Mapbox

Alternatively you can use a Mapbox access token plot your map. Mapbox is much for responsive than standard
Scattergeo plot.

from resonate.visual_timeline import timeline
import pandas as pd

mapbox_access_token = 'YOUR MAPBOX ACCESS TOKEN HERE'
detections = pd.read_csv("/path/to/detection.csv")
timeline(detections, "Title", mapbox_token=mapbox_access_token)

12.13.3 Example Output

Below is the sample output for blue sharks off of the coast of Nova Scotia, without using Mapbox.

44 Chapter 12. Contents:

resonate Documentation, Release v1.0.9

12.13.4 Visual Timeline Functions

12.13. Visual Timeline 45

resonate Documentation, Release v1.0.9

46 Chapter 12. Contents:

CHAPTER 13

Indices and tables

• genindex

• modindex

• search

47

resonate Documentation, Release v1.0.9

48 Chapter 13. Indices and tables

Python Module Index

a
abacus_plot, 29

b
bubble_plot, 30

c
cohorts, 31
compress, 32

f
filters, 34

i
interval_data_tool, 36

r
receiver_efficiency, 42
residence_index, 39

u
uniqueid, 44

49

resonate Documentation, Release v1.0.9

50 Python Module Index

Index

A
abacus_plot (module), 29
abacus_plot() (in module abacus_plot), 29
add_unqdetecid() (in module uniqueid), 44
aggregate_total_no_overlap() (in module res-

idence_index), 39
aggregate_total_with_overlap() (in module

residence_index), 39

B
bubble_plot (module), 30
bubble_plot() (in module bubble_plot), 30

C
cohort() (in module cohorts), 31
cohorts (module), 31
compress (module), 32
compress_detections() (in module compress), 32

D
distance_filter() (in module filters), 34

F
filter_detections() (in module filters), 35
filters (module), 34

G
get_days() (in module residence_index), 39
get_distance_matrix() (in module filters), 35
get_station_location() (in module resi-

dence_index), 40

I
interval_data() (in module interval_data_tool), 36
interval_data_tool (module), 36

P
plot_ri() (in module residence_index), 40

R
receiver_efficiency (module), 42
REI() (in module receiver_efficiency), 42
residence_index (module), 39
residency_index() (in module residence_index),

40

T
total_days_count() (in module residence_index),

41
total_days_diff() (in module residence_index),

41

U
uniqueid (module), 44

V
velocity_filter() (in module filters), 35

51

	Abacus Plot
	Bubble Plot
	Cohort
	Compressing Detections
	Filtering
	Distance Matrix
	Interval Data
	Residence Index
	Receiver Efficiency Index
	Unique Id
	Visual Timeline
	Contents:
	Installation
	Preparing Data
	Abacus Plot
	Bubble Plot
	Cohort
	Compressing Detections
	Filtering Detections on Distance / Time
	Interval Data
	Residence Index
	Receiver Efficiency Index
	Subsetting Data
	Unique Detections ID
	Visual Timeline

	Indices and tables
	Python Module Index
	Index

