

    
      
          
            
  
resonATe Overview

resonATe is the Ocean Tracking Network’s acoustic telemetry analysis toolkit.
It can be used to filter, compress, visualize and analyze acoustic detection
extracts from OTN and other marine telemetry data.
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Abacus Plot

The abacus plot is a way to plot annimal along time. The function uses Plotly to place your points on a scatter plot. ycolumn is used as the y axis and datecollected is used as the x axis. color_column is used to group detections together and assign them a color. Details are in Abacus Plot.



Bubble Plot

The bubble plot function returns a Plotly scatter plot layered ontop of a map. The color of the markers will indicate the number of detections at each location. Alternatively, you can indicate the number of individuals seen at each location by using type = 'individual'. Details are in Bubble Plot.



Cohort

The tool takes a file of compressed detections and a time parameter in minutes. It identifies groups of animals traveling together. Each station an animal visits is checked for other animals detected there within the specified time period. Details are in Cohort Tool.



Compressing Detections

Compressing detections is done by looking at the detection times and locations of an animal. Any detections that occur successively in time, in the same location, and the time between detections does not exceed the timefilter, are combined into a single detection with a start and end time. The result is a compressed detections Pandas DataFrame.

Compression is the first step of the Mihoff Interval Data Tool. Compressed detection DataFrames are needed for the tools, such as interval and cohort.  Details are in Compression Tool.



Filtering

(White, E., Mihoff, M., Jones, B., Bajona, L., Halfyard, E. 2014. White-Mihoff False Filtering Tool)

OTN has developed a tool which will assist with filtering false detections. The first level of filtering involves identifying isolated detections. The original concept came from work done by Easton White. He was kind enough to share his research database with OTN. We did some preliminary research and developed a proposal for a filtering tool based on what Easton had done. This proof of concept was presented to Steve Kessel and Eddie Halfyard in December 2013 and a decision was made to develop a tool for general use.

This is a very simple tool. It will take an input file of detections and based on an input parameter will identify suspect detections. The suspect detections will be put into a dataframe which the user can examine. There will be enough information for each suspect detection for the user to understand why it was flagged. There is also enough information to be able to reference the detection in the original file if the user wants to see what was happening at the same time.

The input parameter is a time in minutes. We used 3600 seconds as the default as this is what was used in Easton’s code. This value can be changed by the user. The output contains a record for each detection for which there has been more than xx minutes since the previous detection (of that tag/animal) and more than the same amount of time until the next detection. It ignores which receiver the detection occurred at. That is all it does, nothing more and nothing less. Details are in Filter Tool.

Two other filtering tools are available as well, one based on distance alone and one based on velocity. They can be found at Filter Tools as well.



Distance Matrix

This takes a DataFrame created by the White-Mihoff False Filtering tool. The file contains rows of station pairs with the straight line distance between them calculated in metres. A station pair will only be in the file if an animal traveled between the stations. If an animal goes from stn1 to stn2 and then to stn3, pairs stn1-stn2 and stn2-stn3 will be in the file. If no animal goes between stn1 and stn3, that pair will not be in the file. The tool also takes a file that the researcher provides of ‘real distances’.  The output will be a file which looks like the first file with the ‘real distance’ column updated. Details are in Distance Matrix Tool



Interval Data

(Mihoff, M., Jones, B., Bajona, L., Halfyard, E. 2014. Mihoff Interval Data Tool)

This tool will take a DataFrame of compressed detections and a distance matrix and output an interval DataFrame. The Interval DataFrame will contain records of the animal id, the arrival time at stn1, the departure time at stn1, the detection count at stn1, the arrival time at stn2, time between detections at the two stations, the interval in seconds, the distance between stations, and the velocity of the animal in m/s. Details are in Interval Data Tool.



Residence Index

This residence index tool will take a compressed or uncompressed detection file and caculate the residency index for each station/receiver in the detections. A CSV file will be written to the data directory for future use. A Pandas DataFrame is returned from the function, which can be used to plot the information. The information passed to the function is what is used to calculate the residence index, make sure you are only passing the data you want taken into consideration for the residence index (i.e. species, stations, tags, etc.). Details in Residence Index Tool.



Receiver Efficiency Index

(Ellis, R., Flaherty-Walia, K., Collins, A., Bickford, J., Walters Burnsed,  Lowerre-Barbieri S. 2018. Acoustic telemetry array evolution: from species- and project-specific designs to large-scale, multispecies, cooperative networks) [https://doi.org/10.1016/j.fishres.2018.09.015]

The receiver efficiency index is number between 0 and 1 indicating the amount of relative activity at each receiver compared to the entire set of receivers, regardless of positioning. The function takes a set detections and a deployment history of the receivers to create a context for the detections. Both the amount of unique tags and number of species are taken into consideration in the calculation. For the exact method, see the details in Receiver Efficiency Index.



Unique Id

This tool will add a column to any file. The unique id will be sequential integers. No validation is done on the input file. Details in Unique Detections ID.



Visual Timeline

This tool takes a detections extract file and generates a Plotly animated timeline, either in place in an iPython notebook or exported out to an HTML file. Details in Visual Timeline.
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Installation

resonATe can be installed using Pip or through a Conda environment.


Conda

conda config --add channels conda-forge
conda install resonate







Pip

pip install resonate









          

      

      

    

  

    
      
          
            
  
Preparing Data

resonATe requires your acoustic telemetry data to have specific column headers. The column headers are the same ones used by the Ocean Tracking Network for their detection extracts.

The columns you need are as follows:


	catalognumber - A unique identifier assigned to an animal.


	station  - A unique identifier for the station or mooring where the receiver was located. This column is used in resonATe for grouping detections which should be considered to have occurred in the same place.


	datecollected - Date and time of release or detection, all of which have the same timezone (example format: 2018-02-02 04:09:45).


	longitude - The receiver location at time of detection in decimal degrees.


	latitude -  The receiver location at time of detection in decimal degrees.


	scientificname - The taxonmoic name for the animal detected.


	fieldnumber - The unique number for the tag/device attached to the animal.


	unqdetecid - A unique value assigned to each record in the data. resonATe includes a function to generate this column if needed. Details in Unique Detections ID.




The Receiver Efficiency Index also needs a deployment history for stations. The columns for deployments are as follows:


	station_name - A unique identifier for the station or mooring where the receiver was located. This column is used in resonATe for grouping detections which should be considered to have occurred in the same place.


	deploy_date - A date of when the receiver was placed in a water or is active (example format: 2018-02-02).


	recovery_date - A date of when the receiver was removed from the water or became inactive (example format: 2018-02-02).


	last_download - A date of the last time data was retrieved from the receiver (example format: 2018-02-02).




All other columns are not required and will not affect the functions; however, they may be used in some functions. For example, receiver_group can be used color code data in the Abacus Plot.


Warning

Detection records from mobile receivers, i.e. from receivers attached to gliders or animals, as well as satellite transmitter detections, will not necessarily be appropriate or compatible for use with all of these tools.




Renaming Columns

Pandas [https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename.html]  provides a rename() function that can be implemented as follows:

import pandas as pd

df = pd.read_csv('/path/to/detections.csv')

df.rename(index=str, columns={
  'your_animal_id_column':'catalognumber',
  'your_station_column':'station',
  'your_date_time_column':'datecollected',
  'your_longitude_column':'longitude',
  'your_latitude_column':'latitude',
  'your_unique_id_column':'unqdetecid'
}, inplace=True)







Example Dataset















	catalognumber

	scientificname

	commonname

	receiver_group

	station

	datecollected

	timezone

	longitude

	latitude

	unqdetecid





	NSBS-Sophie

	Prionace glauca

	blue shark

	HFX

	HFX248

	2014-06-08 20:10

	UTC

	-63.50002

	42.89487

	HFX-A69-9001-26655-170932



	NSBS-Sophie

	Prionace glauca

	blue shark

	HFX

	HFX248

	2014-06-08 20:12

	UTC

	-63.50002

	42.89487

	HFX-A69-9001-26655-170933



	NSBS-Sophie

	Prionace glauca

	blue shark

	HFX

	HFX249

	2014-06-08 20:12

	UTC

	-63.50002

	42.88764

	HFX-A69-9001-26655-170934



	NSBS-Sophie

	Prionace glauca

	blue shark

	HFX

	HFX248

	2014-06-08 20:14

	UTC

	-63.50002

	42.89487

	HFX-A69-9001-26655-170935



	NSBS-Sophie

	Prionace glauca

	blue shark

	HFX

	HFX248

	2014-06-08 20:16

	UTC

	-63.50002

	42.89487

	HFX-A69-9001-26655-170936



	NSBS-Sophie

	Prionace glauca

	blue shark

	HFX

	HFX248

	2014-06-08 20:17

	UTC

	-63.50002

	42.89487

	HFX-A69-9001-26655-170937



	NSBS-Sophie

	Prionace glauca

	blue shark

	HFX

	HFX248

	2014-06-08 20:27

	UTC

	-63.50002

	42.89487

	HFX-A69-9001-26655-170938



	NSBS-Sophie

	Prionace glauca

	blue shark

	HFX

	HFX247

	2014-06-08 20:28

	UTC

	-63.49995

	42.90203

	HFX-A69-9001-26655-170939



	NSBS-Lola

	Prionace glauca

	blue shark

	HFX

	HFX119

	2014-06-20 11:36

	UTC

	-63.3331

	43.79986

	HFX-A69-9001-26667-173924



	NSBS-Lola

	Prionace glauca

	blue shark

	HFX

	HFX118

	2014-06-20 11:37

	UTC

	-63.32552

	43.8043

	HFX-A69-9001-26667-171528



	NSBS-Lola

	Prionace glauca

	blue shark

	HFX

	HFX119

	2014-06-20 11:38

	UTC

	-63.3331

	43.79986

	HFX-A69-9001-26667-173925



	NSBS-Lola

	Prionace glauca

	blue shark

	HFX

	HFX118

	2014-06-20 11:38

	UTC

	-63.32552

	43.8043

	HFX-A69-9001-26667-171529



	NSBS-Lola

	Prionace glauca

	blue shark

	HFX

	HFX119

	2014-06-20 11:40

	UTC

	-63.3331

	43.79986

	HFX-A69-9001-26667-173926



	NSBS-Lola

	Prionace glauca

	blue shark

	HFX

	HFX118

	2014-06-20 11:41

	UTC

	-63.32552

	43.8043

	HFX-A69-9001-26667-171530



	NSBS-Lola

	Prionace glauca

	blue shark

	HFX

	HFX119

	2014-06-20 11:42

	UTC

	-63.3331

	43.79986

	HFX-A69-9001-26667-173927



	NSBS-Lola

	Prionace glauca

	blue shark

	HFX

	HFX118

	2014-06-20 11:43

	UTC

	-63.32552

	43.8043

	HFX-A69-9001-26667-171531



	NSBS-Lola

	Prionace glauca

	blue shark

	HFX

	HFX119

	2014-06-20 11:44

	UTC

	-63.3331

	43.79986

	HFX-A69-9001-26667-173928



	NSBS-Lola

	Prionace glauca

	blue shark

	HFX

	HFX119

	2014-06-20 11:46

	UTC

	-63.3331

	43.79986

	HFX-A69-9001-26667-173929



	NSBS-Ophelia

	Prionace glauca

	blue shark

	HFX

	HFX182

	2014-06-21 3:21

	UTC

	-63.50012

	43.36992

	HFX-A69-9001-26669-173703



	NSBS-Ophelia

	Prionace glauca

	blue shark

	HFX

	HFX183

	2014-06-21 3:22

	UTC

	-63.50003

	43.3631

	HFX-A69-9001-26669-174594



	NSBS-Ophelia

	Prionace glauca

	blue shark

	HFX

	HFX183

	2014-06-21 3:24

	UTC

	-63.50003

	43.3631

	HFX-A69-9001-26669-174595



	NSBS-Ophelia

	Prionace glauca

	blue shark

	HFX

	HFX183

	2014-06-21 3:26

	UTC

	-63.50003

	43.3631

	HFX-A69-9001-26669-174596



	NSBS-Ophelia

	Prionace glauca

	blue shark

	HFX

	HFX183

	2014-06-21 3:28

	UTC

	-63.50003

	43.3631

	HFX-A69-9001-26669-174597



	NSBS-Ophelia

	Prionace glauca

	blue shark

	HFX

	HFX182

	2014-06-21 3:29

	UTC

	-63.50012

	43.36992

	HFX-A69-9001-26669-173704



	NSBS-Ophelia

	Prionace glauca

	blue shark

	HFX

	HFX183

	2014-06-21 3:30

	UTC

	-63.50003

	43.3631

	HFX-A69-9001-26669-174598



	NSBS-Ophelia

	Prionace glauca

	blue shark

	HFX

	HFX182

	2014-06-21 3:30

	UTC

	-63.50012

	43.36992

	HFX-A69-9001-26669-173705



	NSBS-Ophelia

	Prionace glauca

	blue shark

	HFX

	HFX182

	2014-06-21 3:38

	UTC

	-63.50012

	43.36992

	HFX-A69-9001-26669-173706



	NSBS-Ophelia

	Prionace glauca

	blue shark

	HFX

	HFX182

	2014-06-21 3:43

	UTC

	-63.50012

	43.36992

	HFX-A69-9001-26669-173707










          

      

      

    

  

    
      
          
            
  
Abacus Plot

The abacus plot is a way to plot annimal along time. The function uses
Plotly to place your points on a scatter plot. ycolumn is used as
the y axis and datecollected is used as the x axis. color_column
is used to group detections together and assign them a color.


Warning

Input files must include datecollected as a column.



from resonate.abacus_plot import abacus_plot
import pandas as pd

df = pd.read_csv('/path/to/detections.csv')





To display the plot in iPython use:

abacus_plot(df, ycolumn='catalognumber', color_column='receiver_group')





Or use the standard plotting function to save as HTML:

abacus_plot(df, ipython_display=False, filename='example.html')





Below is the sample output for blue sharks off of the coast of Nova Scotia.





Abacus Plot Function


	
abacus_plot.abacus_plot(detections, ycolumn='catalognumber', color_column=None, ipython_display=True, title='Abacus Plot', filename=None)

	Creates a plotly abacus plot from a pandas dataframe


	Parameters

	
	detections – detection dataframe


	ycolumn – the series/column for the y axis of the plot


	color_column – the series/column to group by and assign a color


	ipython_display – a boolean to show in a notebook


	title – the title of the plot


	filename – Plotly filename to write to






	Returns

	A plotly scatter plot













          

      

      

    

  

    
      
          
            
  
Bubble Plot

The bubble plot function returns a Plotly scatter plot layered ontop of
a map. The color of the markers will indicate the number of detections
at each location. Alternatively, you can indicate the number of
individuals seen at each location by using type = 'individual'.


Warning

Input files must include station , catalognumber, unqdetecid, latitude, longitude, and datecollected as  columns.



from resonate.bubble_plot import bubble_plot
import pandas as pd
import plotly.offline as py

df = pd.read_csv('/path/to/detections.csv')





To display the plot in iPython use:

bubble_plot(df)





Or use the standard plotting function to save as HTML:

bubble_plot(df,ipython_display=False, filename='/path_to_plot.html')





You can also do your count by number of individuals by using
type = 'individual:

bubble_plot(df, type='individual')







Mapbox

Alternatively you can use a Mapbox access token plot your map. Mapbox is
much for responsive than standard Scattergeo plot.


Example Code

mapbox_access_token = 'ADD_YOUR_TOKEN_HERE'
bubble_plot(df, mapbox_token=mapbox_access_token)





Below is the sample output for blue sharks off of the coast of Nova Scotia.







Bubble Plot Function


	
bubble_plot.bubble_plot(detections, type='detections', ipython_display=True, title='Bubble Plot', height=700, width=1000, plotly_geo=None, filename=None, mapbox_token=None, marker_size=10, colorscale='Viridis')

	Creates a plotly abacus plot from a pandas dataframe


	Parameters

	
	detections – detection dataframe


	ipython_display – a boolean to show in a notebook


	title – the title of the plot


	height – the height of the plotl


	width – the width of the plotly


	plotly_geo – an optional dictionary to controle the
geographix aspects of the plot


	filename – Plotly filename to write to


	mapbox_token – A string of mapbox access token


	marker_size – An int to indicate the diameter in pixels


	colorscale – A string to indicate the color index






	Returns

	A plotly geoscatter plot or mapbox plot













          

      

      

    

  

    
      
          
            
  
Cohort

The tool takes a dataframe of compressed detections and a time parameter
in minutes. It identifies groups of animals traveling together. Each
station an animal visits is checked for other animals detected there
within the specified time period.

The function returns a dataframe which you can use to help identify
animal cohorts. The cohort is created from the compressed data that is a
result from the compress_detections() function. Pass the compressed
dataframe into the cohort() function along with a time interval in
seconds (default is 3600) to create the cohort dataframe.


Warning


	Input files must include station, catalognumber,

	seq_num, unqdetecid, and datecollected as columns.







from resonate.cohorts import cohort
from resonate.compress import compress_detections
import pandas as pd

time_interval = 3600 # in seconds

data = pd.read_csv('/path/to/detections.csv')

compressed_df = compress_detections(data)

cohort_df = cohort(compressed_df, time_interval)

cohort_df





You can use the Pandas DataFrame.to_csv() function to output the
file to a desired location.

# Saves the cohort file
cohort_df.to_csv('/path/to/output.csv', index=False)






Cohort Functions


	
cohorts.cohort(compressed_df, interval_time=3600)

	Creates a dataframe of cohorts using a compressed detection file


	Parameters

	
	compressed_df – compressed dataframe


	interval_time – cohort detection time interval (in seconds)






	Returns

	cohort dataframe with the following columns


	anml_1


	anml_1_seq


	station


	anml_2


	anml_2_seq


	anml_2_arrive


	anml_2_depart


	anml_2_startunqdetecid


	anml_2_endunqdetecid


	anml_2_detcount
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Compressing Detections

Compressing detections is done by looking at the detection times and
locations of an animal. Any detections that occur successively in time,
and the time between detections does not exceed the timefilter, in
the same location are combined into a single detection with a start and
end time. The result is a compressed detections Pandas DataFrame.

Compression is the first step of the Mihoff Interval Data Tool.
Compressed detection DataFrames are needed for the tools, such as
interval and cohort.


Warning

Input files must include datecollected, catalognumber, and unqdetecid as columns.



from resonate.compress import compress_detections
import pandas as pd

detections = pd.read_csv('/path/to/data.csv')

compressed = compress_detections(detections=detections)





You can use the Pandas DataFrame.to_csv() function to output the
file to a desired location.

compressed.to_csv('/path/to/output.csv', index=False)






Compression Functions


	
compress.compress_detections(detections, timefilter=3600)

	Creates compressed dataframe from detection dataframe


	Parameters

	
	detections – detection dataframe


	timefilter – A maximum amount of time in seconds that can pass before
a new detction event is started






	Returns

	A Pandas DataFrame matrix of detections events
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Filtering Detections on Distance / Time


White/Mihoff Filter

(White, E., Mihoff, M., Jones, B., Bajona, L., Halfyard, E. 2014.
White-Mihoff False Filtering Tool)

OTN has developed a tool which will assist with filtering false
detections. The first level of filtering involves identifying isolated
detections. The original concept came from work done by Easton White. He
was kind enough to share his research database with OTN. We did some
preliminary research and developed a proposal for a filtering tool based
on what Easton had done. This proof of concept was presented to Steve
Kessel and Eddie Halfyard in December 2013 and a decision was made to
develop a tool for general use.

This is a very simple tool. It will take an input file of detections and
based on an input parameter will identify suspect detections. The
suspect detections will be put into a dataframe which the user can
examine. There will be enough information for each suspect detection for
the user to understand why it was flagged. There is also enough
information to be able to reference the detection in the original file
if the user wants to see what was happening at the same time.

The input parameter is a time in seconds. We used 3600 seconds as the
default as this is what was used in Easton’s code. This value can be
changed by the user. The output contains a record for each detection for
which there has been more than xx seconds since the previous detection
(of that tag/animal) and more than the same amount of time until the
next detection. It ignores which receiver the detection occurred at.
That is all it does, nothing more and nothing less.

Below the interval is set to 3600 seconds and is not using a a user
specified suspect file. The function will also create a distance matrix.


Warning

Input files must include datecollected, catalognumber, station and unqdetecid as columns.



from resonate.filters import get_distance_matrix
from resonate.filters import filter_detections
import pandas as pd

detections = pd.read_csv('/path/to/detections.csv')

time_interval = 3600 # in seconds

SuspectFile = None

CreateDistanceMatrix = True

filtered_detections = filter_detections(detections,
                                        suspect_file=SuspectFile,
                                        min_time_buffer=time_interval,
                                        distance_matrix=CreateDistanceMatrix)





You can use the Pandas DataFrame.to_csv() function to output the
file to a desired location.

filtered_detections['filtered'].to_csv('/path/to/output.csv', index=False)

filtered_detections['suspect'].to_csv('/path/to/output.csv', index=False)

filtered_detections['dist_mtrx'].to_csv('/path/to/output.csv', index=False)







Distance Filter

The distance filter will separate detections based only on distance. The
maximum_distance argument defaults to 100,000 meters (or 100
kilometers), but can be adjusted. Any detection where the succeeding and
preceding detections are more than the maximum_distance away will be
considered suspect.


Warning

Input files must include datecollected, catalognumber, station and unqdetecid as columns.



from resonate.filters import distance_filter
import pandas as pd

detections = pd.read_csv('/path/to/detections.csv')


filtered_detections = distance_filter(detections)





You can use the Pandas DataFrame.to_csv() function to output the
file to a desired location.

filtered_detections['filtered'].to_csv('/path/to/output.csv', index=False)

filtered_detections['suspect'].to_csv('/path/to/output.csv', index=False)







Velocity Filter

The velocity filter will separate detections based on the animal’s
velocity. The maximum_velocity argument defaults to 10 m/s, but can
be adjusted. Any detection where the succeeding and preceding velocities
of an animal are more than the maximum_velocity will be considered
suspect.


Warning

Input files must include datecollected, catalognumber, station and unqdetecid as columns.



from resonate.filters import velocity_filter
import pandas as pd

detections = pd.read_csv('/path/to/detections.csv')


filtered_detections = velocity_filter(detections)





You can use the Pandas DataFrame.to_csv() function to output the
file to a desired location.

filtered_detections['filtered'].to_csv('/path/to/output.csv', index=False)

filtered_detections['suspect'].to_csv('/path/to/output.csv', index=False)







Filtering Functions


	
filters.distance_filter(detections, maximum_distance=100000)

	
	Parameters

	
	detections – a Pandas DataFrame of acoustic detection


	maximum_distance – a umber in meters, default is 100000






	Returns

	A list of Pandas DataFrames of filtered detections and suspect
detections










	
filters.filter_detections(detections, suspect_file=None, min_time_buffer=3600, distance_matrix=False)

	Filters isolated detections that are more than min_time_buffer apart from
other dets. for a series of detections in detection_file. Returns Filtered
and Suspect dataframes.
suspect_file can be a file of existing suspect detections to remove before
filtering.
dist_matrix is created as a matrix of between-station distances from
stations defined in the input file.


	Parameters

	
	detections – A Pandas DataFrame of acoustic detections


	suspect_file – Path to a user specified suspect file, same format as the detections


	min_time_buffer – The minimum of time required for outlier detections
in seconds


	distance_matrix – A boolean of whether or not to generate the
distance matrix






	Returns

	A list of Pandas DataFrames of filtered detections, suspect
detections, and a distance matrix










	
filters.get_distance_matrix(detections)

	Creates a distance matrix of all stations in the array or line.


	Parameters

	detections – a Pandas DataFrame of detections



	Returns

	A Pandas DataFrame matrix of station to station distances










	
filters.velocity_filter(detections, maximum_velocity=10)

	
	Parameters

	
	detections – 


	maximum_velocity – 






	Returns

	A list of Pandas DataFrames of filtered detections and suspect
detections
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Interval Data

interval_data() takes a compressed detections DataFrame, a distance
matrix, and a detection radius DataFrame and creates an interval data
DataFrame.

Intervals are lengths of time in which a station detected an animal.
Many consecutive detections of an animal are replaced by one interval.


Warning

Input files must include datecollected, catalognumber, and unqdetecid as columns.



from resonate.filters import get_distance_matrix
from resonate.compress import compress_detections
from resonate.interval_data_tool import interval_data
import pandas as pd
import geopy

input_file = pd.read_csv("/path/to/detections.csv")
compressed = compress_detections(input_file)
matrix = get_distance_matrix(input_file)





Set the station radius for each station name.

detection_radius = 400

station_det_radius = pd.DataFrame([(x, geopy.distance.Distance(detection_radius/1000.0))
                                   for x in matrix.columns.tolist()], columns=['station','radius'])

station_det_radius.set_index('station', inplace=True)

station_det_radius





You can modify individual stations if needed by using
DatraFrame.set_value() from Pandas.

station_name = 'HFX001'

station_detection_radius = 500

station_det_radius.at[station_name, 'radius'] = geopy.distance.Distance( station_detection_radius/1000.0 )





Create the interval data by passing the compressed detections, the
matrix, and the station radii.

interval = interval_data(compressed_df=compressed, dist_matrix_df=matrix, station_radius_df=station_det_radius)

interval





You can use the Pandas DataFrame.to_csv() function to output the
file to a desired location.

interval.to_csv('/path/to/output.csv', index=False)






Interval Data Functions


	
interval_data_tool.interval_data(compressed_df, dist_matrix_df, station_radius_df=None)

	Creates a detection interval file from a compressed detection, distance matrix and station detection radius DataFrames


	Parameters

	
	compressed_df – compressed detection dataframe


	dist_matrix_df – station distance matrix dataframe


	station_radius – station distance radius dataframe






	Returns

	interval detection Dataframe
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Residence Index

Kessel et al. Paper https://www.researchgate.net/publication/279269147

This residence index tool will take a compressed or uncompressed
detection file and caculate the residency index for each
station/receiver in the detections. A CSV file will be written to the
data directory for future use. A Pandas DataFrame is returned from the
function, which can be used to plot the information. The information
passed to the function is what is used to calculate the residence index,
make sure you are only passing the data you want taken into
consideration for the residence index (i.e. species, stations, tags,
etc.).

detections: The CSV file in the data directory that is either
compressed or raw. If the file is not compressed please allow the
program time to compress the file and add the rows to the database. A
compressed file will be created in the data directory. Use the
compressed file for any future runs of the residence index function.

calculation_method: The method used to calculate the residence
index. Methods are:


	kessel


	timedelta


	aggregate_with_overlap


	aggregate_no_overlap.




project_bounds: North, South, East, and West bounding longitudes
and latitudes for visualization.

The calculation methods are listed and described below before they are
called. The function will default to the Kessel method when nothing is
passed.

Below is an example of inital variables to set up, which are the
detection file and the project bounds.


Warning

Input files must include datecollected, station, longitude,
latitude, catalognumber, and unqdetecid as columns.



from resonate import residence_index as ri
import pandas as pd

detections = pd.read_csv('/Path/to/detections.csv')






Kessel Residence Index Calculation

The Kessel method converts both the startdate and enddate columns into a
date with no hours, minutes, or seconds. Next it creates a list of the
unique days where a detection was seen. The size of the list is returned
as the total number of days as an integer. This calculation is used to
determine the total number of distinct days (T) and the total number of
distinct days per station (S).

\(RI = \frac{S}{T}\)

RI = Residence Index

S = Distinct number of days detected at the station

T = Distinct number of days detected anywhere on the array


Warning

Possible rounding error may occur as a detection on 2016-01-01 23:59:59
and a detection on 2016-01-02 00:00:01 would be counted as two days when it is really 2-3 seconds.




Kessel RI Example Code

kessel_ri = ri.residency_index(detections, calculation_method='kessel')

ri.plot_ri(kessel_ri)








Timedelta Residence Index Calculation

The Timedelta calculation method determines the first startdate of all
detections and the last enddate of all detections. The time difference
is then taken as the values to be used in calculating the residence
index. The timedelta for each station is divided by the timedelta of the
array to determine the residence index.

\(RI = \frac{\Delta S}{\Delta T}\)

RI = Residence Index

\(\Delta S\) = Last detection time at a station - First detection
time at the station

\(\Delta T\) = Last detection time on an array - First detection
time on the array


Timedelta RI Example Code

timedelta_ri = ri.residency_index(detections, calculation_method='timedelta')

ri.plot_ri(timedelta_ri)








Aggregate With Overlap Residence Index Calculation

The Aggregate With Overlap calculation method takes the length of time
of each detection and sums them together. A total is returned. The sum
for each station is then divided by the sum of the array to determine
the residence index.

RI = \(\frac{AwOS}{AwOT}\)

RI = Residence Index

AwOS = Sum of length of time of each detection at the station

AwOT = Sum of length of time of each detection on the array


Aggregate With Overlap RI Example Code

with_overlap_ri = ri.residency_index(detections, calculation_method='aggregate_with_overlap')

ri.plot_ri(with_overlap_ri)








Aggregate No Overlap Residence Index Calculation

The Aggregate No Overlap calculation method takes the length of time of
each detection and sums them together. However, any overlap in time
between one or more detections is excluded from the sum.

For example, if the first detection is from 2016-01-01 01:02:43 to
2016-01-01 01:10:12 and the second detection is from 2016-01-01
01:09:01 to 2016-01-01 01:12:43, then the sume of those two
detections would be 10 minutes.

A total is returned once all detections of been added without overlap.
The sum for each station is then divided by the sum of the array to
determine the residence index.

RI = \(\frac{AnOS}{AnOT}\)

RI = Residence Index

AnOS = Sum of length of time of each detection at the station, excluding
any overlap

AnOT = Sum of length of time of each detection on the array, excluding
any overlap


Aggregate No Overlap RI Example Code

no_overlap_ri = ri.residency_index(detections, calculation_method='aggregate_no_overlap')

ri.plot_ri(no_overlap_ri, title="ANO RI")








Mapbox

Alternatively you can use a Mapbox access token plot your map. Mapbox is
much for responsive than standard Scattergeo plot.


Mapbox Example Code

mapbox_access_token = 'YOUR MAPBOX ACCESS TOKEN HERE'
kessel_ri = ri.residency_index(detections, calculation_method='kessel')
ri.plot_ri(kessel_ri, mapbox_token=mapbox_access_token,marker_size=40, scale_markers=True)








Residence Index Functions


	
residence_index.aggregate_total_no_overlap(detections)

	The function below aggregates timedelta of startdate and enddate, excluding overlap between
detections. Any overlap between two detections is converted to a new detection using the earlier
startdate and the latest enddate. If the startdate and enddate are the same, a timedelta of one
second is assumed.


	Parameters

	detections – pandas DataFrame pulled from the compressed detections CSV



	Returns

	An float in the number of days










	
residence_index.aggregate_total_with_overlap(detections)

	The function below aggregates timedelta of startdate and enddate of each detection into
a final timedelta then returns a float of the number of days. If the startdate and enddate
are the same, a timedelta of one second is assumed.


	Parameters

	detections – Pandas DataFrame pulled from the compressed detections CSV



	Returns

	An float in the number of days










	
residence_index.get_days(dets, calculation_method='kessel')

	Determines which calculation method to use for the residency index.

Wrapper method for the calulation methods above.


	Parameters

	
	dets – A Pandas DataFrame pulled from the compressed detections CSV


	calculation_method – determines which method above will be used to
count total time and station time






	Returns

	An int in the number of days










	
residence_index.get_station_location(station, detections)

	Returns the longitude and latitude of a station/receiver given the station
and the table name.


	Parameters

	
	station – String that contains the station name


	detections – the table name in which to find the station






	Returns

	A Pandas DataFrame of station, latitude, and longitude










	
residence_index.plot_ri(ri_data, ipython_display=True, title='Bubble Plot', height=700, width=1000, plotly_geo=None, filename=None, marker_size=6, scale_markers=False, colorscale='Viridis', mapbox_token=None)

	
	Parameters

	
	ri_data – A Pandas DataFrame generated from residency_index()


	ipython_display – a boolean to show in a notebook


	title – the title of the plot


	height – the height of the plotly


	width – the width of the plotly


	plotly_geo – an optional dictionary to control the
geographic aspects of the plot


	filename – Plotly filename to write to


	mapbox_token – A string of mapbox access token


	marker_size – An int to indicate the diameter in pixels


	scale_markers – A boolean to indicate whether or not markers are
scaled by their value


	colorscale – A string to indicate the color index. See here for
options:
https://community.plot.ly/t/what-colorscales-are-available-in-plotly-and-which-are-the-default/2079






	Returns

	A plotly geoscatter










	
residence_index.residency_index(detections, calculation_method='kessel')

	This function takes in a detections CSV and determines the residency
index for reach station.

Residence Index (RI) was calculated as the number of days an individual
fish was detected at each receiver station divided by the total number of
days the fish was detected anywhere on the acoustic array. - Kessel et al.


	Parameters

	
	detections – CSV Path


	calculation_method – determines which method above will be used to
count total time and station time






	Returns

	A residence index DataFrame with the following columns


	days_detected


	latitude


	longitude


	residency_index


	station















	
residence_index.total_days_count(detections)

	The function below takes a Pandas DataFrame and determines the number of days any
detections were seen on the array.

The function converst both the startdate and enddate columns into a date with no hours, minutes,
or seconds. Next it creates a list of the unique days where a detection was seen. The size of the
list is returned as the total number of days as an integer.

* NOTE **
Possible rounding error may occur as a detection on 2016-01-01 23:59:59 and a detection on
2016-01-02 00:00:01 would be counted as days when it is really 2-3 seconds.


	Parameters

	detections – Pandas DataFrame pulled from the compressed detections CSV



	Returns

	An int in the number of days










	
residence_index.total_days_diff(detections)

	Determines the total days difference.

The difference is determined
by the minimal startdate of every detection and the maximum enddate of
every detection. Both are converted into a datetime then subtracted to
get a timedelta. The timedelta is converted to seconds and divided by
the number of seconds in a day (86400). The function returns a floating
point number of days (i.e. 503.76834).


	Parameters

	detections – Pandas DataFrame pulled from the compressed detections CSV



	Returns

	An float in the number of days
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Receiver Efficiency Index

The receiver efficiency index is number between 0 and 1
indicating the amount of relative activity at each receiver compared to
the entire set of receivers, regardless of positioning. The function
takes a set detections and a deployment history of the receivers to
create a context for the detections. Both the amount of unique tags and
number of species are taken into consideration in the calculation.

The receiver efficiency index implement is implemented based on the
paper Acoustic telemetry array evolution: From species- and
project-specific designs to large-scale, multispecies, cooperative
networks [https://doi.org/10.1016/j.fishres.2018.09.015]. Each
receiver’s index is calculated on the formula of:

REI =
\(\frac{T_r}{T_a} \times \frac{S_r}{S_a} \times \frac{DD_r}{DD_a} \times \frac{D_a}{D_r}\)




	REI = Receiver Efficiency Index


	\(T_r\) = The number of tags detected on the receievr


	\(T_a\) = The number of tags detected across all receivers


	\(S_r\) = The number of species detected on the receiver


	\(S_a\) = The number of species detected across all receivers


	\(DD_a\) = The number of unique days with detections across all
receivers


	\(DD_r\) = The number of unique days with detections on the
receiver


	\(D_a\) = The number of days the array was active


	\(D_r\) = The number of days the receiver was active




Each REI is then normalized against the sum of all considered stations.
The result is a number between 0 and 1 indicating the relative
amount of activity at each receiver.


Warning

Detection input files must include datecollected, fieldnumber, station, and scientificname as columns and deployment input files must include station_name, deploy_date, last_download, and recovery_date as columns.



REI() takes two arguments. The first is a dataframe of detections
the detection timstamp, the station identifier, the species, and the tag
identifier. The next is a dataframe of deployments for each station. The
station name should match the stations in the detections. The
deployments need to include a deployment date and recovery date or last
download date. Details on the columns metnioned see the preparing data
section.


Warning

This function assumes that no deployments for single station overlap. If deployments do overlap, the overlapping days will be counted twice.



from resonate.receiver_efficiency import REI

detections = pd.read_csv('/path/to/detections.csv')
deployments = pd.read_csv('/path/to/deployments.csv')

station_REIs = REI(detections = detections, deployments = deployments)






Residence Index Functions


	
receiver_efficiency.REI(detections, deployments)

	Calculates a returns a list of each station and the REI (defined here):


	Parameters

	
	detections – a pandas DataFrame of detections


	deployments – a pandas DataFrame of station deployment histories






	Returns

	a pandas DataFrame of station, REI, latitude, and longitude
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Subsetting Data

Sometimes there is too much data for a visualization tool to handle, or
you wish to only take a certain subset of your input data and apply it
elsewhere.

These examples, written in Python and leveraging the Pandas data
manipulation package, are meant as a starting point. More complex
operations are possible in Pandas, but these should form a baseline of
understanding that will cover the most common operations.

import pandas as pd
filename = "/path/to/data.csv"
data = pd.read_csv(directory+filename)






Subsetting data by date range

Provide a date field, as well as starting and ending date range. By
default, the detection date column of a detection extract file is
provided.

# Enter the column name that contains the date you wish to evaluate
datecol = 'datecollected'
# Enter the start date in the following format
startdate = "YYYY-MM-DD"

# Enter the end date in the following format
enddate = "YYYY-MM-DD"

# Subsets the dat between the two indicated dates uding the datecollected column
data_date_subset = data[(data[datecol] > startdate) & (data[datecol] < enddate)]

# Output the subset data to a new CSV in the indicated directory
data_date_subset.to_csv(directory+startdate+"_to_"+enddate+"_"+filename, index=False)







Subsetting on column value

Provide the column you expect to have a certain value and the value
you’d like to create a subset from.

# Enter the column you want to subset
column=''

# Enter the value you want to find in the above column
value=''

# The following pulls the new data subset into a Pandas DataFrame
data_column_subset=data[data[column]==value]

# Output the subset data to a new CSV in the indicated directory
data_column_subset.to_csv(directory+column+"_"+value.replace(" ", "_")+"_"+filename, index=False)
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Unique Detections ID

Adds the uniquecid column to your input file. The uniquecid column
assigns every detection record a unique numerical value. This column is
needed in order to perform operations, such as filter and compression
functions.

The code below will add a unique detection ID column and return the
Pandas dataframe.

from resonate.uniqueid import add_unqdetecid

input_file = '/path/to/detections.csv'

unqdet_det = add_unqdetecid(input_file);





You can use the Pandas DataFrame.to_csv() function to output the
file to a desired location.

unqdet_det.to_csv('/path/to/output.csv', index=False)






Unique Detections Function


	
uniqueid.add_unqdetecid(input_file, encoding='utf-8-sig')

	Adds the unqdetecid column to an input csv file. The resulting file is returned as a pandas DataFrame object.


	Parameters

	
	input_file – Path to the input csv file.


	encoding – source encoding for the input file (Default utf8-bom)






	Returns

	padnas DataFrame including unqdetecid column.
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Visual Timeline


This tool takes a detections extract file and generates a Plotly
animated timeline, either in place in an iPython notebook or exported
out to an HTML file.


Warning

Input files must include datecollected, catalognumber, station, latitude, and longitude as columns.



from resonate.visual_timeline import timeline
import pandas as pd
detections = pd.read_csv("/path/to/detection.csv")
timeline(detections, "Timeline")






Exporting to an HTML File

You can export the map to an HTML file by setting ipython_display to
False.

from resonate.visual_timeline import timeline
import pandas as pd
detections = pd.read_csv("/path/to/detection.csv")
timeline(detections, "Timeline", ipython_display=False)







Mapbox

Alternatively you can use a Mapbox access token plot your map. Mapbox is
much for responsive than standard Scattergeo plot.

from resonate.visual_timeline import timeline
import pandas as pd

mapbox_access_token = 'YOUR MAPBOX ACCESS TOKEN HERE'
detections = pd.read_csv("/path/to/detection.csv")
timeline(detections, "Title", mapbox_token=mapbox_access_token)







Example Output

Below is the sample output for blue sharks off of the coast of Nova Scotia,
without using Mapbox.






Visual Timeline Functions
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Index



 A
 | B
 | C
 | D
 | F
 | G
 | I
 | P
 | R
 | T
 | U
 | V
 


A


  	
      	abacus_plot (module)


      	abacus_plot() (in module abacus_plot)


  

  	
      	add_unqdetecid() (in module uniqueid)


      	aggregate_total_no_overlap() (in module residence_index)


      	aggregate_total_with_overlap() (in module residence_index)


  





B


  	
      	bubble_plot (module)


  

  	
      	bubble_plot() (in module bubble_plot)


  





C


  	
      	cohort() (in module cohorts)


      	cohorts (module)


  

  	
      	compress (module)


      	compress_detections() (in module compress)


  





D


  	
      	distance_filter() (in module filters)


  





F


  	
      	filter_detections() (in module filters)


  

  	
      	filters (module)


  





G


  	
      	get_days() (in module residence_index)


  

  	
      	get_distance_matrix() (in module filters)


      	get_station_location() (in module residence_index)


  





I


  	
      	interval_data() (in module interval_data_tool)


  

  	
      	interval_data_tool (module)


  





P


  	
      	plot_ri() (in module residence_index)


  





R


  	
      	receiver_efficiency (module)


      	REI() (in module receiver_efficiency)


  

  	
      	residence_index (module)


      	residency_index() (in module residence_index)


  





T


  	
      	total_days_count() (in module residence_index)


  

  	
      	total_days_diff() (in module residence_index)


  





U


  	
      	uniqueid (module)


  





V


  	
      	velocity_filter() (in module filters)
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Abacus Plot

The abacus plot is a way to plot annimal along time. The function uses
Plotly to place your points on a scatter plot. ycolumn is used as
the y axis and datecollected is used as the x axis. color_column
is used to group detections together and assign them a color.


Warning

Input files must include datecollected as a column.



from resonate.abacus_plot import abacus_plot
import pandas as pd

df = pd.read_csv('/path/to/detections.csv')





To display the plot in iPython use:

abacus_plot(df, ycolumn='catalognumber', color_column='receiver_group')





Or use the standard plotting function to save as HTML:

abacus_plot(df, ipython_display=False, filename='example.html')
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Unique Detections ID

Adds the uniquecid column to your input file. The uniquecid column
assigns every detection record a unique numerical value. This column is
needed in order to perform operations, such as filter and compression
functions.

The code below will add a unique detection ID column and return the
Pandas dataframe.

from resonate.uniqueid import add_unqdetecid

input_file = '/path/to/detections.csv'

unqdet_det = add_unqdetecid(input_file);





You can use the Pandas DataFrame.to_csv() function to output the
file to a desired location.

unqdet_det.to_csv('/path/to/output.csv', index=False)
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Bubble Plot

The bubble plot function returns a Plotly scatter plot layered ontop of
a map. The color of the markers will indicate the number of detections
at each location. Alternatively, you can indicate the number of
individuals seen at each location by using type = 'individual'.


Warning

Input files must include station , catalognumber, unqdetecid, latitude, longitude, and datecollected as  columns.



from resonate.bubble_plot import bubble_plot
import pandas as pd
import plotly.offline as py

df = pd.read_csv('/path/to/detections.csv')





To display the plot in iPython use:

bubble_plot(df)





Or use the standard plotting function to save as HTML:

bubble_plot(df,ipython_display=False, filename='/path_to_plot.html')





You can also do your count by number of individuals by using
type = 'individual:

bubble_plot(df, type='individual')







Mapbox

Alternatively you can use a Mapbox access token plot your map. Mapbox is
much for responsive than standard Scattergeo plot.


Example Code

mapbox_access_token = 'ADD_YOUR_TOKEN_HERE'
bubble_plot(df, mapbox_token=mapbox_access_token)
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Cohort

The tool takes a dataframe of compressed detections and a time parameter
in minutes. It identifies groups of animals traveling together. Each
station an animal visits is checked for other animals detected there
within the specified time period.

The function returns a dataframe which you can use to help identify
animal cohorts. The cohort is created from the compressed data that is a
result from the compress_detections() function. Pass the compressed
dataframe into the cohort() function along with a time interval in
seconds (default is 3600) to create the cohort dataframe.


Warning


	Input files must include station, catalognumber,

	seq_num, unqdetecid, and datecollected as columns.







from resonate.cohorts import cohort
from resonate.compress import compress_detections
import pandas as pd

time_interval = 3600 # in seconds

data = pd.read_csv('/path/to/detections.csv')

compressed_df = compress_detections(data)

cohort_df = cohort(compressed_df, time_interval)

cohort_df





You can use the Pandas DataFrame.to_csv() function to output the
file to a desired location.

# Saves the cohort file
cohort_df.to_csv('/path/to/output.csv', index=False)
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Compressing Detections

Compressing detections is done by looking at the detection times and
locations of an animal. Any detections that occur successively in time,
and the time between detections does not exceed the timefilter, in
the same location are combined into a single detection with a start and
end time. The result is a compressed detections Pandas DataFrame.

Compression is the first step of the Mihoff Interval Data Tool.
Compressed detection DataFrames are needed for the tools, such as
interval and cohort.


Warning

Input files must include datecollected, catalognumber, and unqdetecid as columns.



from resonate.compress import compress_detections
import pandas as pd

detections = pd.read_csv('/path/to/data.csv')

compressed = compress_detections(detections=detections)





You can use the Pandas DataFrame.to_csv() function to output the
file to a desired location.

compressed.to_csv('/path/to/output.csv', index=False)
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Filtering Detections on Distance / Time


White/Mihoff Filter

(White, E., Mihoff, M., Jones, B., Bajona, L., Halfyard, E. 2014.
White-Mihoff False Filtering Tool)

OTN has developed a tool which will assist with filtering false
detections. The first level of filtering involves identifying isolated
detections. The original concept came from work done by Easton White. He
was kind enough to share his research database with OTN. We did some
preliminary research and developed a proposal for a filtering tool based
on what Easton had done. This proof of concept was presented to Steve
Kessel and Eddie Halfyard in December 2013 and a decision was made to
develop a tool for general use.

This is a very simple tool. It will take an input file of detections and
based on an input parameter will identify suspect detections. The
suspect detections will be put into a dataframe which the user can
examine. There will be enough information for each suspect detection for
the user to understand why it was flagged. There is also enough
information to be able to reference the detection in the original file
if the user wants to see what was happening at the same time.

The input parameter is a time in seconds. We used 3600 seconds as the
default as this is what was used in Easton’s code. This value can be
changed by the user. The output contains a record for each detection for
which there has been more than xx seconds since the previous detection
(of that tag/animal) and more than the same amount of time until the
next detection. It ignores which receiver the detection occurred at.
That is all it does, nothing more and nothing less.

Below the interval is set to 3600 seconds and is not using a a user
specified suspect file. The function will also create a distance matrix.


Warning

Input files must include datecollected, catalognumber, station and unqdetecid as columns.



from resonate.filters import get_distance_matrix
from resonate.filters import filter_detections
import pandas as pd

detections = pd.read_csv('/path/to/detections.csv')

time_interval = 3600 # in seconds

SuspectFile = None

CreateDistanceMatrix = True

filtered_detections = filter_detections(detections,
                                        suspect_file=SuspectFile,
                                        min_time_buffer=time_interval,
                                        distance_matrix=CreateDistanceMatrix)





You can use the Pandas DataFrame.to_csv() function to output the
file to a desired location.

filtered_detections['filtered'].to_csv('/path/to/output.csv', index=False)

filtered_detections['suspect'].to_csv('/path/to/output.csv', index=False)

filtered_detections['dist_mtrx'].to_csv('/path/to/output.csv', index=False)







Distance Filter

The distance filter will separate detections based only on distance. The
maximum_distance argument defaults to 100,000 meters (or 100
kilometers), but can be adjusted. Any detection where the succeeding and
preceding detections are more than the maximum_distance away will be
considered suspect.


Warning

Input files must include datecollected, catalognumber, station and unqdetecid as columns.



from resonate.filters import distance_filter
import pandas as pd

detections = pd.read_csv('/path/to/detections.csv')


filtered_detections = distance_filter(detections)





You can use the Pandas DataFrame.to_csv() function to output the
file to a desired location.

filtered_detections['filtered'].to_csv('/path/to/output.csv', index=False)

filtered_detections['suspect'].to_csv('/path/to/output.csv', index=False)







Velocity Filter

The velocity filter will separate detections based on the animal’s
velocity. The maximum_velocity argument defaults to 10 m/s, but can
be adjusted. Any detection where the succeeding and preceding velocities
of an animal are more than the maximum_velocity will be considered
suspect.


Warning

Input files must include datecollected, catalognumber, station and unqdetecid as columns.



from resonate.filters import velocity_filter
import pandas as pd

detections = pd.read_csv('/path/to/detections.csv')


filtered_detections = velocity_filter(detections)





You can use the Pandas DataFrame.to_csv() function to output the
file to a desired location.

filtered_detections['filtered'].to_csv('/path/to/output.csv', index=False)

filtered_detections['suspect'].to_csv('/path/to/output.csv', index=False)
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Interval Data

interval_data() takes a compressed detections DataFrame, a distance
matrix, and a detection radius DataFrame and creates an interval data
DataFrame.

Intervals are lengths of time in which a station detected an animal.
Many consecutive detections of an animal are replaced by one interval.


Warning

Input files must include datecollected, catalognumber, and unqdetecid as columns.



from resonate.filters import get_distance_matrix
from resonate.compress import compress_detections
from resonate.interval_data_tool import interval_data
import pandas as pd
import geopy

input_file = pd.read_csv("/path/to/detections.csv")
compressed = compress_detections(input_file)
matrix = get_distance_matrix(input_file)





Set the station radius for each station name.

detection_radius = 400

station_det_radius = pd.DataFrame([(x, geopy.distance.Distance(detection_radius/1000.0))
                                   for x in matrix.columns.tolist()], columns=['station','radius'])

station_det_radius.set_index('station', inplace=True)

station_det_radius





You can modify individual stations if needed by using
DatraFrame.set_value() from Pandas.

station_name = 'HFX001'

station_detection_radius = 500

station_det_radius.at[station_name, 'radius'] = geopy.distance.Distance( station_detection_radius/1000.0 )





Create the interval data by passing the compressed detections, the
matrix, and the station radii.

interval = interval_data(compressed_df=compressed, dist_matrix_df=matrix, station_radius_df=station_det_radius)

interval





You can use the Pandas DataFrame.to_csv() function to output the
file to a desired location.

interval.to_csv('/path/to/output.csv', index=False)
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Receiver Efficiency Index

The receiver efficiency index is number between 0 and 1
indicating the amount of relative activity at each receiver compared to
the entire set of receivers, regardless of positioning. The function
takes a set detections and a deployment history of the receivers to
create a context for the detections. Both the amount of unique tags and
number of species are taken into consideration in the calculation.

The receiver efficiency index implement is implemented based on the
paper Acoustic telemetry array evolution: From species- and
project-specific designs to large-scale, multispecies, cooperative
networks [https://doi.org/10.1016/j.fishres.2018.09.015]. Each
receiver’s index is calculated on the formula of:

REI =
\(\frac{T_r}{T_a} \times \frac{S_r}{S_a} \times \frac{DD_r}{DD_a} \times \frac{D_a}{D_r}\)




	REI = Receiver Efficiency Index


	\(T_r\) = The number of tags detected on the receievr


	\(T_a\) = The number of tags detected across all receivers


	\(S_r\) = The number of species detected on the receiver


	\(S_a\) = The number of species detected across all receivers


	\(DD_a\) = The number of unique days with detections across all
receivers


	\(DD_r\) = The number of unique days with detections on the
receiver


	\(D_a\) = The number of days the array was active


	\(D_r\) = The number of days the receiver was active




Each REI is then normalized against the sum of all considered stations.
The result is a number between 0 and 1 indicating the relative
amount of activity at each receiver.


Warning

Detection input files must include datecollected, fieldnumber, station, and scientificname as columns and deployment input files must include station_name, deploy_date, last_download, and recovery_date as columns.



REI() takes two arguments. The first is a dataframe of detections
the detection timstamp, the station identifier, the species, and the tag
identifier. The next is a dataframe of deployments for each station. The
station name should match the stations in the detections. The
deployments need to include a deployment date and recovery date or last
download date. Details on the columns metnioned see the preparing data
section.


Warning

This function assumes that no deployments for single station overlap. If deployments do overlap, the overlapping days will be counted twice.



from resonate.receiver_efficiency import REI

detections = pd.read_csv('/path/to/detections.csv')
deployments = pd.read_csv('/path/to/deployments.csv')

station_REIs = REI(detections = detections, deployments = deployments)
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Residence Index

Kessel et al. Paper https://www.researchgate.net/publication/279269147

This residence index tool will take a compressed or uncompressed
detection file and caculate the residency index for each
station/receiver in the detections. A CSV file will be written to the
data directory for future use. A Pandas DataFrame is returned from the
function, which can be used to plot the information. The information
passed to the function is what is used to calculate the residence index,
make sure you are only passing the data you want taken into
consideration for the residence index (i.e. species, stations, tags,
etc.).

detections: The CSV file in the data directory that is either
compressed or raw. If the file is not compressed please allow the
program time to compress the file and add the rows to the database. A
compressed file will be created in the data directory. Use the
compressed file for any future runs of the residence index function.

calculation_method: The method used to calculate the residence
index. Methods are:


	kessel


	timedelta


	aggregate_with_overlap


	aggregate_no_overlap.




project_bounds: North, South, East, and West bounding longitudes
and latitudes for visualization.

The calculation methods are listed and described below before they are
called. The function will default to the Kessel method when nothing is
passed.

Below is an example of inital variables to set up, which are the
detection file and the project bounds.


Warning

Input files must include datecollected, station, longitude,
latitude, catalognumber, and unqdetecid as columns.



from resonate import residence_index as ri
import pandas as pd

detections = pd.read_csv('/Path/to/detections.csv')






Kessel Residence Index Calculation

The Kessel method converts both the startdate and enddate columns into a
date with no hours, minutes, or seconds. Next it creates a list of the
unique days where a detection was seen. The size of the list is returned
as the total number of days as an integer. This calculation is used to
determine the total number of distinct days (T) and the total number of
distinct days per station (S).

\(RI = \frac{S}{T}\)

RI = Residence Index

S = Distinct number of days detected at the station

T = Distinct number of days detected anywhere on the array


Warning

Possible rounding error may occur as a detection on 2016-01-01 23:59:59
and a detection on 2016-01-02 00:00:01 would be counted as two days when it is really 2-3 seconds.




Kessel RI Example Code

kessel_ri = ri.residency_index(detections, calculation_method='kessel')

ri.plot_ri(kessel_ri)








Timedelta Residence Index Calculation

The Timedelta calculation method determines the first startdate of all
detections and the last enddate of all detections. The time difference
is then taken as the values to be used in calculating the residence
index. The timedelta for each station is divided by the timedelta of the
array to determine the residence index.

\(RI = \frac{\Delta S}{\Delta T}\)

RI = Residence Index

\(\Delta S\) = Last detection time at a station - First detection
time at the station

\(\Delta T\) = Last detection time on an array - First detection
time on the array


Timedelta RI Example Code

timedelta_ri = ri.residency_index(detections, calculation_method='timedelta')

ri.plot_ri(timedelta_ri)








Aggregate With Overlap Residence Index Calculation

The Aggregate With Overlap calculation method takes the length of time
of each detection and sums them together. A total is returned. The sum
for each station is then divided by the sum of the array to determine
the residence index.

RI = \(\frac{AwOS}{AwOT}\)

RI = Residence Index

AwOS = Sum of length of time of each detection at the station

AwOT = Sum of length of time of each detection on the array


Aggregate With Overlap RI Example Code

with_overlap_ri = ri.residency_index(detections, calculation_method='aggregate_with_overlap')

ri.plot_ri(with_overlap_ri)








Aggregate No Overlap Residence Index Calculation

The Aggregate No Overlap calculation method takes the length of time of
each detection and sums them together. However, any overlap in time
between one or more detections is excluded from the sum.

For example, if the first detection is from 2016-01-01 01:02:43 to
2016-01-01 01:10:12 and the second detection is from 2016-01-01
01:09:01 to 2016-01-01 01:12:43, then the sume of those two
detections would be 10 minutes.

A total is returned once all detections of been added without overlap.
The sum for each station is then divided by the sum of the array to
determine the residence index.

RI = \(\frac{AnOS}{AnOT}\)

RI = Residence Index

AnOS = Sum of length of time of each detection at the station, excluding
any overlap

AnOT = Sum of length of time of each detection on the array, excluding
any overlap


Aggregate No Overlap RI Example Code

no_overlap_ri = ri.residency_index(detections, calculation_method='aggregate_no_overlap')

ri.plot_ri(no_overlap_ri, title="ANO RI")








Mapbox

Alternatively you can use a Mapbox access token plot your map. Mapbox is
much for responsive than standard Scattergeo plot.


Mapbox Example Code

mapbox_access_token = 'YOUR MAPBOX ACCESS TOKEN HERE'
kessel_ri = ri.residency_index(detections, calculation_method='kessel')
ri.plot_ri(kessel_ri, mapbox_token=mapbox_access_token,marker_size=40, scale_markers=True)
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Visual Timeline


This tool takes a detections extract file and generates a Plotly
animated timeline, either in place in an iPython notebook or exported
out to an HTML file.


Warning

Input files must include datecollected, catalognumber, station, latitude, and longitude as columns.



from resonate.visual_timeline import timeline
import pandas as pd
detections = pd.read_csv("/path/to/detection.csv")
timeline(detections, "Timeline")






Exporting to an HTML File

You can export the map to an HTML file by setting ipython_display to
False.

from resonate.visual_timeline import timeline
import pandas as pd
detections = pd.read_csv("/path/to/detection.csv")
timeline(detections, "Timeline", ipython_display=False)







Mapbox

Alternatively you can use a Mapbox access token plot your map. Mapbox is
much for responsive than standard Scattergeo plot.

from resonate.visual_timeline import timeline
import pandas as pd

mapbox_access_token = 'YOUR MAPBOX ACCESS TOKEN HERE'
detections = pd.read_csv("/path/to/detection.csv")
timeline(detections, "Title", mapbox_token=mapbox_access_token)
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